Overview of experimental results on Nucleon Spin Structure

F.Kunne - CEA Saclay, France

- Gluon and quark helicities
- Transverse spin &

Transverse Momentum Dependent quark distributions

Outlook

Baldin Seminar, Dubna, Russia, Oct. 4-9 2010

How is the nucleon spin distributed among its constituents?

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$ quark gluon orbital momentum Nucleon Spin $\Delta q = \overrightarrow{q} - \overrightarrow{q}$ Parton spin parallel or anti parallel to nucleon spin Theory : QCD, Ellis-Jaffe sum rule assuming $\Delta s = 0$, $\Delta\Sigma \sim 0.6$ $a_0 \sim 0.3$ Experiment: World data on polarized DIS $g_1 + SU_f(3) \rightarrow$ QCD (MS scheme) $a_0 = \Delta \Sigma$ \rightarrow "Spin crisis" 1988, EMC measured $a_0 = 0.12 \pm 0.17$ QCD (AB scheme) $a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G$

• For $a_0 \sim 0.3$, need $\Delta G \sim 2.5$ to restore $\Delta \Sigma \sim 0.6$. (Then $L_{q,g} \sim -2.3$)

 $\cdot \Delta G$ enters in the spin $\frac{1}{2}$ sum rule

 \rightarrow motivated measurement of gluon polarization $\Delta \textbf{G}$

Three ways to determine $\Delta G/G$

3. QCD evolution of $g_1(x,Q^2)$: Indirect determination assuming a functional form $\Delta G(x)$

HERA e⁺ & e⁻ 27 GeV longitudinaly polarized ~ 54%

Gaseous internal target

Longit. Polar. 85% H, D, He Transv. Polar H Unpol H, D, Ne, Kr

HERMES at DESY

1995 to 2007

COMPASS at CERN

Fixed target Secondary muon or hadron beams from SPS

1. $\Delta G/G$ from Photon Gluon fusion (PGF)

Need a process sensitive to gluon distribution : PGF
 Longitudinal spin asymmetry of cross sections
 polarized lepton beam & polarized nucleon target.

$$A_{LL} = R_{PGF} < a_{LL} > < \Delta G/G >$$

Two signatures for PGF: • q=c open charm $c \rightarrow D^0 \rightarrow K \pi$ Clean signature of PGF pQCD scale $\mu^2 = 4 (m_c^2 + p_T^2)$ Combinatorial background & limited statistics \rightarrow Difficult experiment COMPASS

• q=u,d,s high p_T hadron pair $q q \rightarrow h h$ High statistics pQCD scale Q^2 or Σp_T^2 Physical background, better described for high Q^2 HERMES, COMPASS

Results for $\Delta G/G$ direct measurements

All measurements compatible with 0 for 0.04 < x < 0.2

Direct measurements exclude values for the integral of ΔG as large as... ~ 0.5

2. Polarized p p collisions at RHIC $\int s = 62, 200, 500 \text{ GeV}$

2. Polarized pp collisions at RHIC

Several channels sensitive to $\Delta \textbf{G}$

Di-Jet production

$\mathbf{p} \mathbf{p} \rightarrow \pi^0 \mathbf{X}$

More abundant channel 3 processes contribute $p p \rightarrow jet X$ $p p \rightarrow jet jet$

Photon-Jet production

p $p \rightarrow \gamma$ jet 1 process \rightarrow cleaner $\Delta G(x_1) \cdot \Delta q(x_2)$ Full kinematics reconstructed Low statistics

 $\Delta G(\mathbf{x}_1) \Delta G(\mathbf{x}_2)$

 $\Delta G(\mathbf{x}_1) . \Delta q(\mathbf{x}_2)$

 $\Delta q(x_1) \cdot \Delta q(x_2)$

 $p p \rightarrow \gamma X$

A_{LL} spin asymmetry from pp collisions at RHIC

Constrains ΔG for 0.02 $\langle x \langle 0.3 \rangle$ in global QCD fits

New:

 π^{0} production with run9, 200 GeV

Will improve constrain on ΔG in QCD fits, for 0.02 < x < 0.3

A_{LL} spin asymmetry from pp collisions at RHIC

STAR, jet +X

New: STAR jet+jet M. Walker, SPIN2010

Spin structure functions - world data $\sigma_{DIS}^{inclusive} \propto g_1(x) \propto \frac{1}{2} \Sigma e_q^2 \left(q(x) + \Delta \overline{q}(x) \right)$ Polarized PDFs Polarized DIS u 2 - X b g^p(x,Q²)+c(x) g^d(x,Q²)+c(x) 3.5 SMC SMC deuteron proton x=0.006 A F143 E143 F155 E155 x=0.015 x=0.015 HERMES HERMES COMPASS COMPASS x=0.025 x=0.025 CLAS W>2.5 CLAS W>2.5 2.5 x=0.035 x=0.035 LSS 05 LSS 05 x=0.049 x=0.049 2. x=0.077 x=0.077 x=0.120 1.5 x=0.170 x=0.240 5 0 D CLAS x=0.340 x=0.340 0.5 0.5 x=0.740 0 0 10^{2} 10^{2} 10 1 10 Q² [GeV²] Q² [GeV²]

Input to global QCD fits \rightarrow Extract $\Delta q_f(x)$ and $\Delta G(x)$ through Q² evolution

3. $\Delta G(x)$ from global QCD fits of polarized DIS data $g_1(x,Q^2)$

3. $\Delta G(x)$ from global QCD fits, more results

$\Delta\Sigma$ from QCD fits

$\begin{array}{l} \label{eq:compass_compa$

- HERMES $\Delta\Sigma = 0.33 \pm 0.011 \text{ (stat)} \pm 0.025 \text{ (theo)} \pm 0.028 \text{ (evol)}$ HERMES g_1^{d} data, $\overline{\text{MS}}$ scheme, $Q^2=5 (\text{GeV/c})^2$, neglecting x < 0.02contrib., PRD75 (2007)012007 $\Delta s + \overline{\Delta s} = -0.085 \pm 0.013 \text{ (th)} \pm 0.008 \text{ (exp)} \pm 0.009 \text{(evol)}$
- **DSSV** $\Delta \Sigma = 0.24$ Q²=10 (GeV/c)², arXiv:0804.0422

LSS '10
$$\label{eq:LSS'10} \begin{split} \Delta\Sigma = 0.25 \pm 0.04 & \mbox{ΔG with node} & \mbox{Q^2=10 (GeV/c)^2$}, \\ \Delta\Sigma = 0.21 \pm 0.03 & \mbox{ΔG >0$} \end{split}$$

Consequence for nucleon spin

• $\Delta G = \int \Delta g(x) dx$ not large, both from direct measurements (essentially PGF + RHIC) and g_1 QCD fit: $|\Delta G| < 0.35$

 $\Delta \Sigma = a_0 + \underbrace{(3\alpha_s/2\pi)\Delta}_{\text{within}} G$ within 0.06 for ΔG within ± 0.35 at Q²=3

 $\rightarrow \Delta \Sigma \sim 0.30$ small (\neq predictions)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

possible scenarios:
$$\begin{cases} \frac{1}{2}0.3 + 0.35 + 0.0 \\ \frac{1}{2}0.3 + 0.0 + 0.35 \\ \frac{1}{2}0.3 - 0.35 + 0.7 \end{cases}$$

Bjorken sum rule

Non-singlet combination : $g_1^{p}(x) - g_1^{n}(x)$

The first moment provides a test of the Bjorken sum rule, a fundamental result of QCD derived from current algebra

$$\int_0^1 g_1^{NS}(x) dx = rac{1}{6} \left| rac{g_{\mathcal{A}}}{g_V}
ight| C^{NS}$$

Fit to COMPASS data: g_A/g_V = 1.28 ±0.07(stat) ± 0.10(syst)

PDG value: 1.268 ±0.003

Quark helicities from SIDIS

Δs puzzle

Inclusive data $(g_1^N \& a_8 \text{ from hyperon decay } +SU(3))$ $\rightarrow \int \Delta s = -0.08$ While semi inclusive data $\rightarrow \Delta s(x) \approx 0$

- Uncertainty on quark fragmentation functions (s-quark to K)
 - would need a factor of ~2 from DSS value of FF
 - COMPASS will try to extract FF from kaon multiplicies in SIDIS
- Global fits (DSSV, LSS) suggest negative Δs at low x
 - reconciliates the two approaches
 - need data at lower x
- Assume SU(3) violation a_8 from 0.58 to 0.42 $\rightarrow \Delta s$ =-0.02 Bass & Thomas, PLB684(2010) 216

Light sea quark polarized distributions, flavour asymmetry

Quark helicities from W production in pp

RHIC short exploratory run : first collisions at 500 GeV

Signs as expected from polarized PDFs Promising channel

Nucleon Structure Functions

Collins and Sivers asymmetries

Transversely polarized target

$$\mu p \uparrow \rightarrow \mu p h^{+/-}$$

Measure simultaneously the two azimuthal asymmetries

Collins: Outgoing hadron direction & <u>quark transverse spin</u> Sivers: Nucleon spin & <u>quark transverse momentum</u>

- "Two hadron" fragm. fct.
- lambda Transverse. Polarization

Transversity : Collins Asymmetry

deuteron COMPASS

Compatible with zero: $\rightarrow \Delta_T u + \Delta_T d$ opposite

proton COMPASS & proton HERMES

• Large signals in valence region \rightarrow both transverse quark distribution $\Delta_T q(x)$ and Collins FF non zero

Opposite for + and -hadrons:
 →opposite u and d Collins FF

 HERMES and COMPASS similar:
 → data support assumption of weak Q² dependence in this energy range

Transversity : Collins Asymmetry

Several combined analyses of HERMES-p, COMPASS-d data, and BELLE FF.

- $\Delta_T u > 0$ and $\Delta_T d < 0$
- Do not saturate Soffer bound
- •Smaller than helicity

Ex: M. Anselmino et al. arXiv:0812.4366

Transversity : Collins Asymmetry on proton

Identifying outgoing hadron: kaons and pions (HERMES-p and COMPASS-p)

Sivers Asymmetry- proton

Comparison with predictions from Anselmino *et al.*, based on fit of Hermes-p and Compass-d data

Present data not in fit

-COMPASS signal < HERMES signal -Possible W dependence

Comparison with calculations of Arnold, Efremov *et al.*, which are in agreement with Hermes-p data.

Sivers Asymmetry on proton

 \rightarrow Much progress in flavour separation (sea quarks)

Possible unexpected dependence on W: Higher signal in HERMES (low W) and in low W part of COMPASS data

Example of one azimuthal asymmetry

Sensitivity to Transverse Momentum Distributions

Future: COMPASS II

approved by CERN SPSC for initial period 2013-1015

• GPD (Generalized Parton Distributions) $\mu p \rightarrow \mu p \gamma$

by exclusive reactions DVCS (Deep Virtual ComptonScattering) and DVMP (Meson production),

2 year 'beam charge and spin asymmetry' measurement

• Polarized Drell-Yan $\pi p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$

Sivers & Boer-Mulders

Transverse Momentum Dependent distributions 2 years with transversely polarised proton target Test of factorization approach : Comparison SIDIS/ Drell-Yan

Summary

Gluon polarization

at LO, $\Delta G/G \sim 0$ at x ~ 0.1 7 independent points (5 from COMPASS) Confirmed by $A_{LL}(p_T)$ at RHIC $\int \Delta G$ could still account for a substantial part of the nucleon spin

• Quark helicity : extraction at LO for all flavours $\Delta s(x) \sim 0$ from SIDIS in measured region, and $\int \Delta s < 0$ from DIS

 Transversity: Collins and Sivers deuteron, compatible ~ 0
 Collins proton: Signal in valence region, for pos. and neg. hadrons Extract Δ_Tu > 0 and Δ_Td < 0
 Sivers proton: Signal for positive hadrons, especially kaons Extract Sivers u and d, and possible k_T dependence

And exciting future programs in preparation COMPASS II, RHIC-spin and Jlab-12 GeV

<u>**Table II.</u>** First moments (total polarizations) Δf of polarized NLO parton densities $\delta f(x, Q^2)$ and $g_1^{p,n}(x, Q^2)$, defined in (1.3) and (1.4), as obtained in the 'standard' scenario. The marginal differences between $\Delta \bar{u}$ and $\Delta \bar{d}$ at $Q^2 > \mu^2$, generated dynamically by the NLO evolution, are not displayed.</u>

$Q^2 \left({ m GeV}^2 \right)$	Δu	Δd	$\Delta \bar{q}$	Δg	$\Delta\Sigma$	Γ_1^p	Γ_1^n
μ^2_{NLO}	0.863	-0.404	-0.062	0.240	0.211	0.119	-0.054
1	0.861	-0.405	-0.063	0.420	0.204	0.127	-0.058
5	0.859	-0.406	-0.064	0.708	0.197	0.132	-0.062
10	0.859	-0.406	-0.064	0.828	0.197	0.133	-0.063

Table IV. First moments (total polarizations) Δf of polarized parton densities $\delta f(x, Q^2)$ and $g_1^{p,n}(x, Q^2)$, defined in (1.3) and (1.4), as obtained in the fully flavor-broken 'valence' scenario. The marginal finite $\Delta s = \Delta \bar{s}(Q^2 > \mu_{\rm NLO}^2)$ are generated dynamically by the NLO evolution.

GRSV-std

$Q^2 \left(\text{GeV}^2 \right)$	Δu	Δd	$\Delta \bar{u}$	$\Delta \bar{d}$	$\Delta s = \Delta \bar{s}$	Δg	$\Delta\Sigma$	Γ_1^p	Γ_1^n
μ^2_{NLO}	0.693	-0.255	0.087	-0.232	0	0.330	0.293	0.119	-0.053
1	0.691	-0.257	0.086	-0.234	$-1.95 imes10^{-3}$	0.579	0.282	0.127	-0.058
5	0.689	-0.258	0.085	-0.235	-3.31×10^{-3}	0.974	0.273	0.132	-0.062
10	0.688	-0.258	0.085	-0.236	-3.64×10^{-3}	1.140	0.272	0.133	-0.062

Transversity : Collins Asymmetry on proton

HERMES pions

8 azimuthal asymmetries extracted at once

Transversity via "two hadron" as an alternative for $\Delta_T u$ and $\Delta_T d$, no FF needed

Confirms non zero effect at large x; larger than Collins asym.

• Smaller signal seen in HERMES in different phase space, but difficult to describe both simultaneously *A.Bacchetta et al., Mah et al.*

Sivers Asymmetry on proton

HERMES K/ π comparison

• K⁺ twice bigger than π^+ Sivers function for the sea quarks \overline{s} and \overline{d} ?

• K⁻ and $\pi^- \sim 0$ us ud

Sivers Asymmetry
$$(\pi^+ - \pi^-)$$

Generalized Parton Distributions

- Unified description of form factors and parton distribution functions
- Transverse imaging = nucleon tomography
- and (in far future) sensitivity to the quark angular momentum

Kinematic domain : intermediate between HERA and JLab $10^{-2} < x_B < 10^{-1}$

Ex: Beam charge & spin asymmetry in DVCS process (interfering with BH):

First signal of DVCS&BH from 2009 short test run, compared to simulations

Polarized Drell-Yan

$\begin{array}{c} \pi \\ \hline \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{p} \\ \end{array} \\ \begin{array}{c} \mu^{\dagger} \\ \mu^{\dagger} \\ \mathbf{x} \\ \end{array}$

$$\sigma^{\scriptscriptstyle DY} \propto f_{\overline{u}|\pi^-} \otimes f_{u|p}$$

Transverse Momentum Dependent (TMD) parton distribution functions

Sivers and Boer Mulders fct will be measured :

in Drell-Yan process
 in µp SIDIS process
 Expect opposite sign
 → Test of factorization approach

$\pi^{-} \mathbf{p}^{\uparrow} \rightarrow \mu^{+} \mu^{-} \mathbf{X}$ transversely polarised NH₃target

Measurement of unpolarized PDFs

• In parallel to the DVCS/DVMP program, get (for free) SIDIS data on LH₂ target

• Extract strange quark PDF s(x) as well as quark fragmentation functions from kaon multiplicities

Short term goal: LO analysis from COMPASS data alone integrated over z

Longer term goal : provide p and K multiplicities as fct of x, z for global QCD analyses