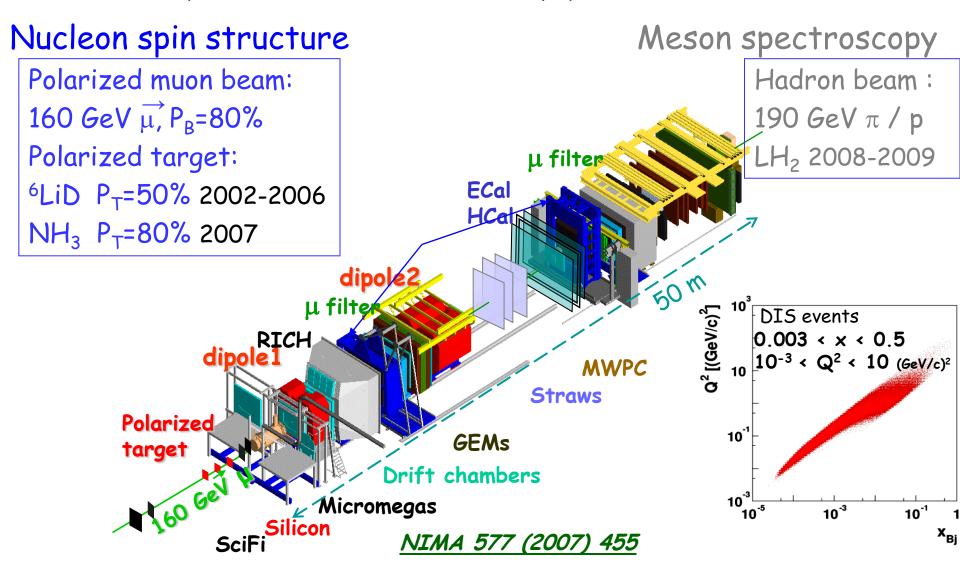

Spin, TMDs and DVCS at COMPASS

F.Kunne - CEA Saclay, France on behalf of the COMPASS collaboration



- Transverse spin &
 - Transverse Momentum Dependent quark distributions
- Future measurements at COMPASS-II

COMPASS

Fixed target experiment at the CERN SPS:
Use secondary muon or hadron beams. 220 physicists from 26 institutes

How is the nucleon spin distributed among its constituents?

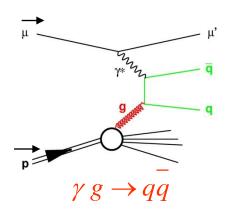
Nucleon Spin
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$
quark gluon orbital momentum
$$\Delta q = \overrightarrow{q} - \overrightarrow{q}$$
Parton spin parallel or anti parallel to nucleon spin

Theory: QCD, Ellis-Jaffe sum rule assuming $\Delta s = 0$, $\Delta\Sigma \sim 0.6$

Experiment: World data on polarized DIS $g_1 + SU_f(3) \rightarrow$ $a_0 \sim 0.3$

```
QCD (MS scheme) a_0 = \Delta \Sigma
                \rightarrow "Spin crisis" 1988, EMC measured a_0 = 0.12 \pm 0.17
QCD (AB scheme) a_0 = \Delta \Sigma - n_f (\alpha_s/2\pi) \Delta G
```

- For $\alpha_0 \sim 0.3$, need $\Delta G \sim 2.5$ to restore $\Delta \Sigma \sim 0.6$. (Then $L_z \sim -2.3$) ΔG enters in the spin $\frac{1}{2}$ sum rule

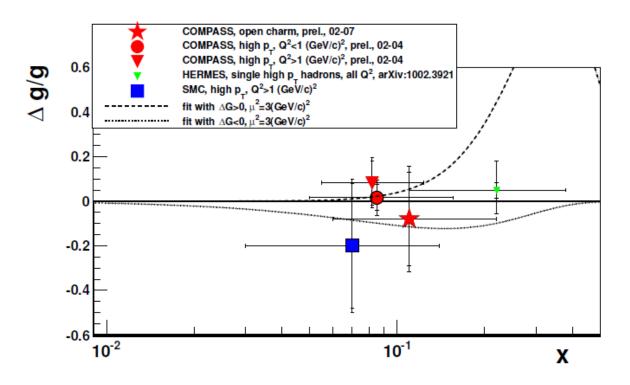

 \rightarrow motivated direct measurements of gluon polarization $\triangle G$

$\Delta G/G$ Measurement-Photon Gluon fusion PGF

Need:

- a process sensitive to gluon distribution \rightarrow Photon Gluon Fusion
- measure longitudinal spin asymmetry of cross sections incident polarized lepton beam and polarized nucleon target.

At leading order
$$A_{II} = R_{PGF} \langle a_{LL} \rangle \langle \Delta G/G \rangle$$

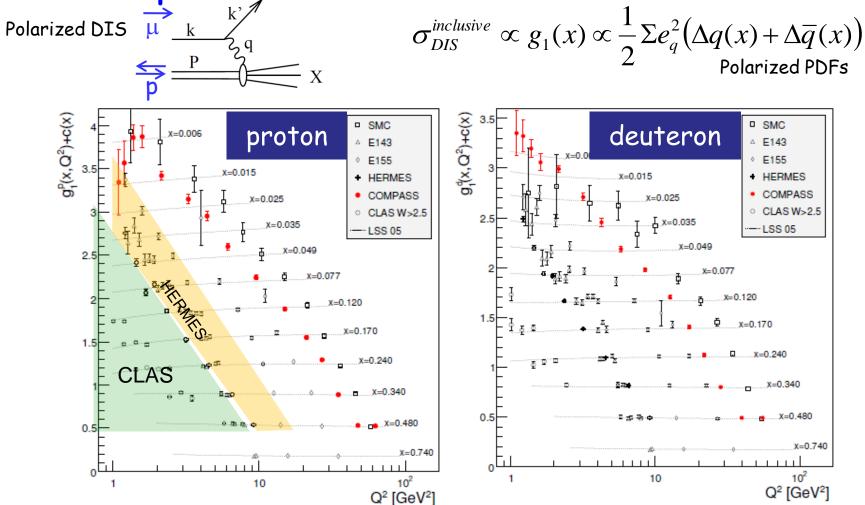


Two signatures for PGF:

• q=c open charm $c \rightarrow D^0 \rightarrow K \pi$ Clean signature of PGF pQCD scale μ^2 = 4 ($m_c^2 + p_T^2$) Combinatorial background & limited statistics \rightarrow Difficult experiment

• q=u,d,s high p_T hadron pair $q \bar{q} \rightarrow h h$ High statistics pQCD scale Q^2 or Σp_T^2 Physical background, better described for high Q^2

Results for $\Delta G/G$ direct measurements

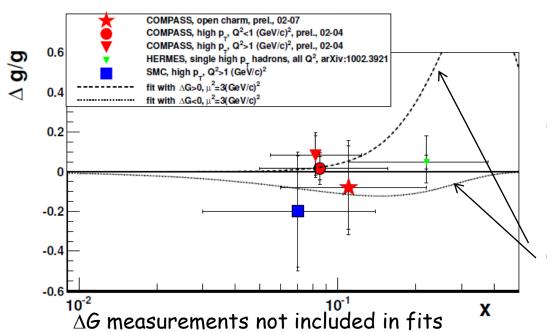


All measurements compatible with 0 for 0.04 < x < 0.2

Also in agreement with RHIC results on double spin asymmetry in polarized pp reactions, which probe same kinematical range

Direct measurements exclude values for the integral of ΔG as large as 1 or 2

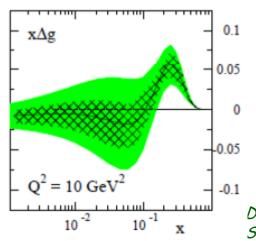
Spin structure functions - world data



From first moment of g_1 , at $Q^2 \rightarrow \infty$:

- $\Delta\Sigma$ =0.30 ± 0.01 (stat.) ± 0.02 (evol.) All data
- $\Delta s + \overline{\Delta s} = -0.08 \pm 0.01 \pm 0.02$ Compass data alone

Input to global QCD fits \rightarrow Extract $\Delta q_f(x)$ and $\Delta G(x)$ through Q² evolution


$\Delta G(x)$ from global QCD analysis of polarized DIS data $q_1(x,Q^2)$

Use Q² evolution of spin dependent gluon and singlet quark distribution.

Lack of polarized data
Fits not so well constrained,
however some results

COMPASS NLO fit of g_1 data: 2 solutions with $|\Delta G|$ =0.2-0.3

DSSV NLO fit of g_1 and \vec{p} \vec{p} data (different scale)

De Florian, Sassot, Stratmann, Vogelsang

Consequence for nucleon spin

• $\Delta G = \int \Delta g(x) dx$ not large, both from direct measurements (essentially PGF + RHIC) and g_1 QCD fit: $|\Delta G| < 0.35$

$$\Delta \Sigma = a_0 + (3\alpha_s/2\pi) \Delta G$$
within 0.06 for ΔG within \pm 0.35 at $Q^2=3$

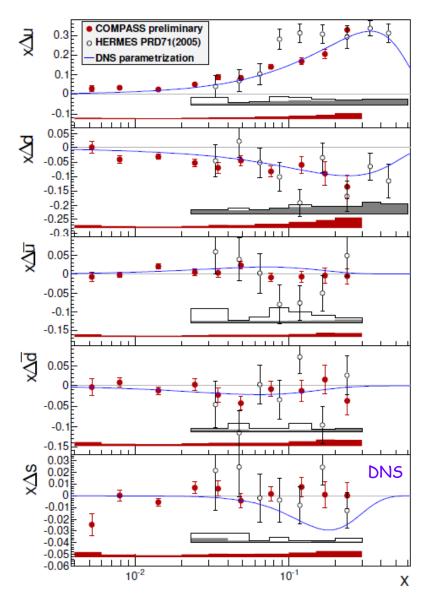
 $\rightarrow \Delta \Sigma \sim 0.30 \text{ small} (\neq \text{predictions})$

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$
possible scenarios:
$$\begin{cases} \frac{1}{2}0.3 + 0.35 + 0.0 \\ \frac{1}{2}0.3 + 0.0 + 0.35 \\ \frac{1}{2}0.3 - 0.35 + 0.7 \end{cases}$$

Non Singlet structure function and Bjorken sum rule

Non-singlet combination : $g_1^p(x) - g_1^n(x)$

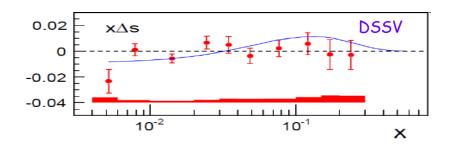
The first moment provides a test of the Bjorken sum rule, a fundamental result of QCD derived from current algebra


$$\int_0^1 g_1^{NS}(x) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C^{NS}$$

Fit to COMPASS data: g_A/g_V = 1.28 ±0.07(stat) ± 0.10(syst)

PDG value:

1.268 ±0.003


LO Helicity quark distributions

- •Full flavour decomposition down to x~0.004
- Sea quark distributions ~ zero
- •Good agreement with previous global fits to g_1 inclusive data, except for Δs .

However, for Δs :

- Large uncertainty on strange quark fragmentation functions.
- New global fits (DSSV) suggest negative contribution at lower x, in agreement with both inclusive result and semi inclusive data.

Transversity - Collins and Sivers asymmetries

- Transversely polarized target
- Measure simultaneously several azimuthal asymmetries of outgoing hadron in SIDIS $\mu p \to \mu p \; h$

Collins: Outgoing hadron direction & quark transverse spin

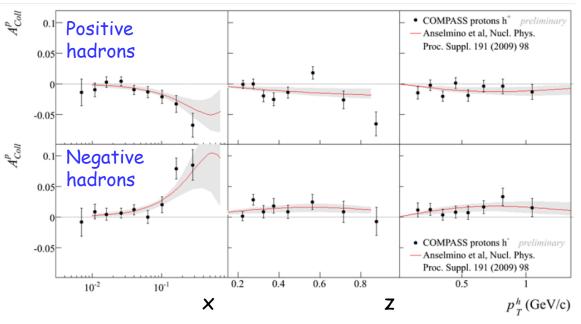
Sivers: nucleon spin & quark transverse momentum

Collins

q transverse spin distr.

$$A_{Coll} = \frac{\sum_{q} e_{q}^{2} \cdot \Delta_{T} q \cdot \Delta D_{q}^{h}}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}} \\ \text{fragmentation} \\ \text{function}$$

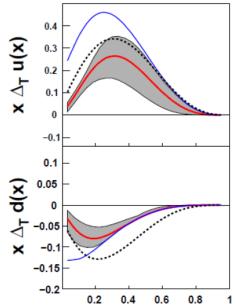
Sivers


$$A_{Siv} = \frac{\sum_{q} e_{q}^{2} \left(f_{1Tq}^{\perp} \right) D_{q}^{h}}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}}$$

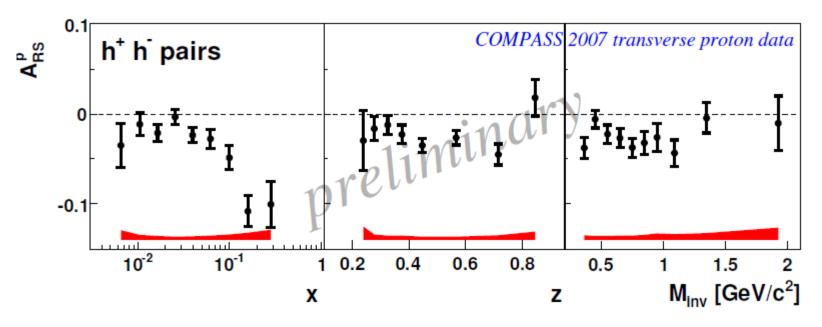
note: $\Delta_{\mathsf{T}}q$ also measured using

- "Two hadron" fragm. fct.
- lambda Transverse, Polarization

Transversity: Collins Asymmetry on proton

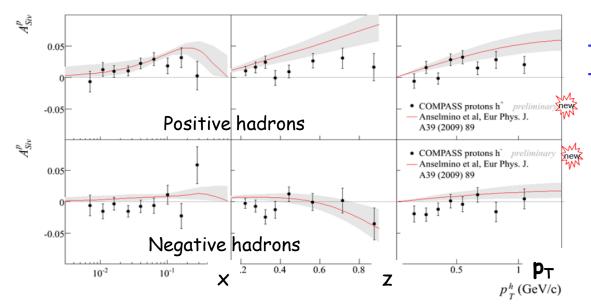

COMPASS data compared to predictions from Anselmino et al., based on fit of HERMES-p and COMPASS-d data, and BELLE FF.

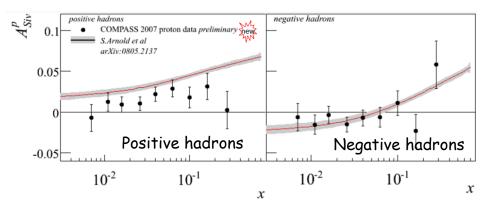
- Large signals in valence region as seen by HERMES, opposite for + and - hadrons
- Data support assumption of weak Q² dependence in this energy range


- $\Delta_T u > 0$ and $\Delta_T d < 0$
- Do not saturate
 Soffer bound
- ·Smaller than helicity

Ex: M. Anselmino et al. arXiv:0812.4366

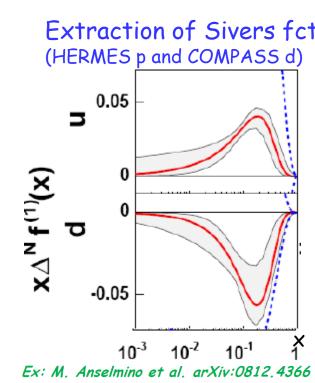
Transversity via "two hadron"


as an alternative for $\Delta_T u$ and $\Delta_T d$


- Confirms non zero effect at large x; larger than Collins asymmetry
- (Smaller) signal was also seen in HERMES in different phase space; difficult to describe both simultaneously A. Bacchetta et al., Mah et al.

Sivers Asymmetry- proton

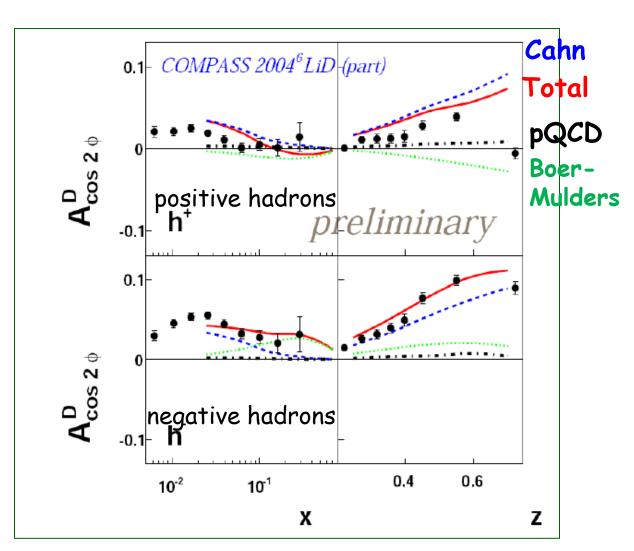
Comparison with predictions from Anselmino et al., based on fit of Hermes-p and Compass-d data



Comparison with calculations of Arnold *et al.*, which are in agreement with Hermes-p data.

Present data not in fit

-COMPASS signal < HERMES signal -Possible W dependence


Example of one azimuthal asymmetry

Unpolarized target.

cos(2 ϕ) modulation comparison with theory

V.Barone, A.Prokudin, B.Q.Ma arXiv:0804.3024 [hep-ph]

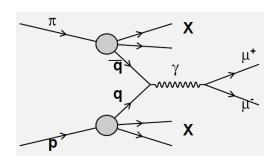
Sensitivity to Transverse Momentum Distributions

Future QCD studies at COMPASS II

COMPASS-II proposal submitted to CERN SPSC, June 2010

• GPD (Generalized Parton Distributions) $\mu p \rightarrow \mu p \gamma$

by exclusive reactions DVCS (Deep Virtual ComptonScattering)

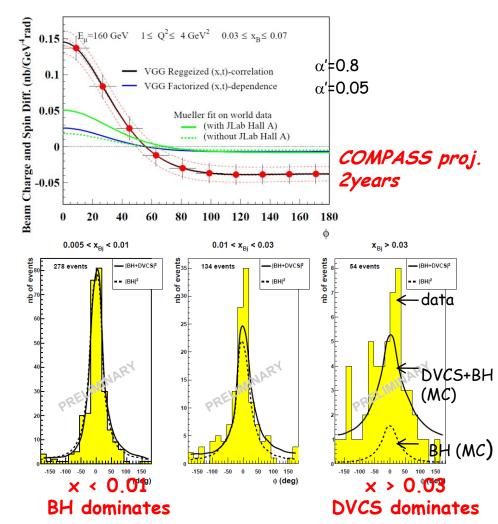

and DVMP (Meson production),

2 year 'beam charge and spin asymmetry' measurement

• Polarized Drell-Yan $\pi p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

Sivers & Boer-Mulders
Transverse Momentum Dependent distributions
2 years transversely polarised proton target
Test of factorization approach

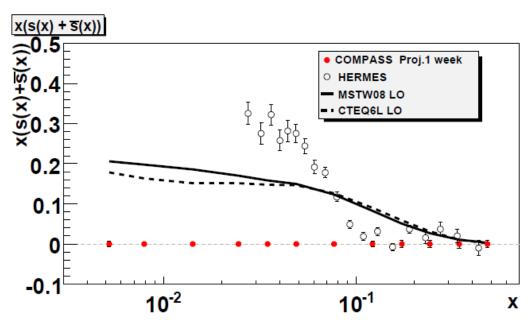
Generalized Parton Distributions


- Unified description of form factors and parton distribution functions
- Transverse imaging = nucleon tomography and (in far future) sensitivity to the quark angular momentum

Kinematic domain: intermediate between HERA and JLab

 $10^{-2} < x_B < 10^{-1}$

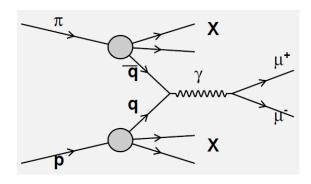
Ex: Beam charge & spin asymmetry in DVCS process (interfering with BH):


First signal of DVCS&BH from 2009 short test run, compared to simulations

Measurement of unpolarized PDfs

- In parallel to the DVCS/DVMP program, get (for free) SIDIS data on LH₂ target
- Extract strange quark PDF s(x) as well as quark fragmentation functions from kaon multiplicities

Short term goal: LO analysis from COMPASS data alone integrated over z

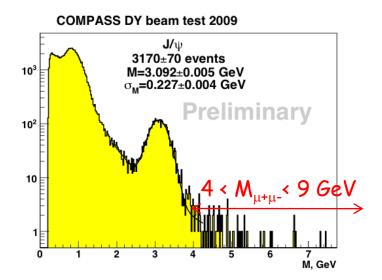


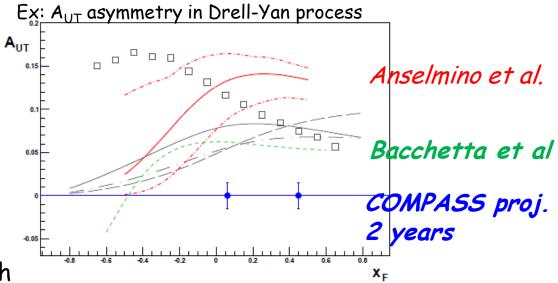
Longer term goal: provide p and K multiplicities as fct of x, z for global QCD analyses

Polarized Drell-Yan

$\pi^{-} \mathbf{p}^{\uparrow} \rightarrow \mu^{+} \mu^{-} \mathbf{X}$

transversely polarised NH3 target




$$oldsymbol{\sigma}^{\mathit{DY}} \! \propto \! f_{\overline{u}|\pi^-} \! \otimes \! f_{u|p}^{'}$$

→ Transverse Momentum Dependent (TMD) parton distribution functions

Sivers and Boer Mulders fct will be measured:

- in Drell-Yan process
- in μp SIDIS process Expect opposite sign
- → Test of factorization approach

COMPASS (Spin) Summary

- Gluon polarization
- High p_T : at LO, $\Delta G/G \sim 0$ at $x \sim 0.1$ two independent & precise results
- Charm: at LO, $\Delta G/G = -0.08 \pm 0.21 \pm 0.11$
- Quark helicity: extraction at LO for all flavours $\Delta s \sim 0$ from SIDIS in measured region
- Transversity:

Collins and Sivers deuteron, compatible ~ 0

Collins proton: Signal in valence region, for pos. and neg. Hadrons

Extract $\Delta_{T}u > 0$ and $\Delta_{T}d < 0$

Sivers proton: Signal for positive hadrons; possible W dependence

And exciting future program in preparation

2010 Precision measurement on Transverse Spin (Sivers)

2011 Longitudinal Spin

2012 & beyond: New proposal COMPASS II