

COMPASS-II Proposal

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2010-014 SPSC-P-340 May 17, 2010

COMPASS-II Proposal

The COMPASS Collaboration

http://www.compass.cern.ch/compass/proposal/compass-II_proposal/ compass-II_proposal.pdf

COMPASS-II Proposal

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-SPSC-2010-022 SPSC-M-772 September 3, 2010

COMPASS-II Proposal: Questions & Answers

The COMPASS Collaboration

http://www.compass.cern.ch/compass/proposal/compass-II_proposal/ compass-II_QA_1.pdf

COMPASS-II Proposal

COMPASS experiment at CERN

270 physicists, 25 institutes, 11 countries

COMPASS experiment at CERN

More than 10 years ago, the Compass experiment was conceived as COmmon Muon and Proton apparatus for Structure and Spectroscopy", capable of addressing a large variety of open problems in both hadron structure and spectroscopy.

COMPASS DY Proposal

- Single polarized Drell-Yan
- Transversity and TMD PDFs
- PDFs universality
- J/ψ-Drell-Yan duality
- Drell-Yan in the COMPASS experiment
- Test beam for study of feasibility
- Kinematic domain, acceptance and expected events rate
- Expected asymmetries and statistic errors

Single polarized Drell-Yan

- Single polarized Drell-Yan
- Transversity and TMD PDFs
- PDFs universality
- J/ψ-Drell-Yan duality

TMD PDFs, like Sivers, can be accessed both from semi-inclusive DIS (SIDIS) and from the Drell-Yan process (DY).

The spin asymmetry is proportional The spin asymmetry is proportional to PDF \otimes FF: to PDF $^{b} \otimes$ FF^t: If unpolarized beam and transversely

polarized target

Single polarized Drell-Yan

 $^{}$

In a recent paper Arnold, Metz and Schlegel derived the full expression of the Drell-Yan cross-section, including unpolarized, transversely and longitudinally polarized terms [S. Arnold et al, Phys.Rev. D79 (2009)034005].

In single polarized DY, with transversely polarized target nucleons, the general expression of the cross-section (LO) is:

$$\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha_{em}^2}{Fq^2} \hat{\sigma}_U \{ (1 + D_{[\sin^2\theta]} A_U^{\cos 2\phi} \cos 2\phi) + |\vec{S}_T| [A_T^{\sin\phi_S} \sin\phi_S + D_{[\sin^2\theta]} (A_T^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S) + A_T^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S))] \}$$

A: azimuthal asymmetries; D: depolarization factor; S: target spin components; F: flux of incoming hadrons; $\sigma_{_U}$: part of the cross-section surviving integration over ϕ and ϕ_s

Single Polarized Drell-Yan

 $A_{\upsilon}^{\ cos2\phi}$ gives access to the Boer-Mulders functions of the incoming hadrons

 $A_{\tau}^{sin\phi S}$ to the Sivers function of the target nucleon

 $A_T^{sin(2\phi+\phi S)}$ to the Boer-Mulders function of the beam hadron and to the pretzelosity function of the target nucleon

 $A_{T}^{sin(2\phi-\phi S)}$ to the Boer-Mulders function of the beam hadron and to the transversity function of the target nucleon

Transverse momentum dependent PDFs

The transverse momentum dependent (TMD) PDFs of the nucleon carry important information about the nucleon spin dynamics:

• Sivers: the $f_{1T}^{\perp}(x, k_{T}^{2})$ function describes the distortion of the probability distribution of a non-polarized quark when it is inside a transversely polarized nucleon.

• Boer-Mulders: the $h_{1}^{L}(x, k_{\tau}^{2})$ function describes the correlation between the transverse spin and the transverse momentum of a quark inside a unpolarized hadron.

• Pretzelosity: the $h_{1T}^{L}(x, k_{T}^{2})$ function describes the transverse polarization of a quark, along its intrinsic k_{T} direction.

SIDIS vs DY

Change of sign of Sivers and Boer-Mulders functions?


~~~~~~

$$f_{1_{T}}^{\perp}(x_{1},k_{T}^{2})_{DY} = -f_{1_{T}}^{\perp}(x_{2},k_{T}^{2})_{SIDIS}$$

J.C. Collins, Phys. Lett. B536 (2002) 43

 $h_{1_{T}}^{\perp}(x_{1},k_{T}^{2})_{DY}^{2} = -h_{1_{T}}^{\perp}(x_{2},k_{T}^{2})_{SIDIS}^{2}$  J.C. Collins, talk at LIGHT CONE 2008

Critical test of universality of TMD factorization approach for the description of SSA.



# $J/\Psi$ -DY duality



In spite of the large amount of experimental data on  $J/\psi$  production in various reaction, the production mechanism is still unclear.

 $J/\Psi$ -DY duality —> model based on close analogy between Drell-Yan and  $J/\Psi$ production mechanism: occurs when the gluon-gluon fusion mechanism of the J/ $\Psi$  production is dominated by the q-q annihilation mechanism

 $\pi^- p^\uparrow \to \gamma^* X \to \mu^+ \mu^- X$ 

 $\pi^- p^\uparrow \to J/\psi X \to \mu^+ \mu^- X$ 

From the study of  $J/\psi$  production in the dileptons decay channel: • Check duality hypothesis – polarized J/ $\psi$  production cross-section • Access PDFs from  $J/\psi$  events – larger statistics available

#### Polarized Drell-Yan experiments







#### What do we need to access spin dependent PDFs through DY?

Polarized Drell-Yan experiments:

- High luminosity (DY Cross Section is a fraction of nanobarns) and large angular acceptance,
- Sufficiently high energy to access 'safe' background free M range ( 4 GeV/  $c^2$  < M< 9 GeV/ $c^2$ )
- Good acceptance in the valence quark range
- Good factor of merit (FoM), which can be represented as a product of the luminosity, target polarisation (dilution factor f) and beam(target) polarisation

## Drell-Yan @ COMPASS







Transversity and Sivers PDFs of the nucleon are addressed in COMPASS presently, from semi-inclusive DIS.

The opportunity to study, with the same spectrometer, the TMD PDFs from the Drell-Yan process is unique.



Large angular acceptance spectrometer

- SPS M2 secondary beams with the intensity up to  $6 \times 10^7$  particles per second

- Large acceptance COMPASS Superconducting Solenoid Magnet
- Solid state polarized target working in frozen spin mode with long relaxation time;
- A detection system designed to stand relatively high particle fluxes;
- A Data Acquisition System (DAQ) that can handle large amounts of data at large trigger rates

#### The COMPASS spectrometer

Inner

GEM

Trigger

Ladder Trigger

50 m

Middle Trigger



#### Drell-Yan at COMPASS: Feasibility







#### Beam tests in COMPASS



 $\gamma^*$ 

 $\sim$ 

In 2008, a test without hadron absorber and increasing the  $\pi$  beam intensity show that even at 1/4 of the needed beam intensity the detectors occupancy was too large  $\implies$  need hadrons absorber.

In 2009 an absorber was placed after the target: 1 meter long concrete block + 1 meter long stainless steel.





#### Beam Tests in COMPASS The hadron absorber



l

#### Beam test 2009 results





Mass resolution as expected from Monte-Carlo, but worse than in previous experiments ⇒ reconstruction programs still need optimization.

#### Beam test 2009 results





The mean value of  $p_{\tau}$  is about 1 GeV/c. This makes Compass sensitive to TMDs, which are expected to be accessible up to  $p_{\tau}$  2 GeV/c.





In the high mass range of the dimuon, Mμμ > 4GeV/c, both annihilating quarks belong to the valence quark range

In case of the J/ψ the contribution of valence quarks is also dominant

#### Beam test 2009 results



• 4. < Μμμ < 9. GeV/c2 (HMR): clean DY signal

• 2. < Mµµ < 2.5 GeV/c2 (IMR): contaminated with:

combinatorial background contribution that can be (a subtracted by using the like-sign muon pairs samples),

physics background mostly from uncorrelated decays of opencharm mesons (in the IMR:  $N_{p,p}$  /  $N_{DV} = 0.14$ )

Combinatorial background (from uncorrelated  $\pi$  decays) is estimated using the measured like-sign µµ distributions: the presence of the absorber reduces the background by a factor  $\approx 10$  at  $M_{\mu\mu} = 2 \text{ GeV/c}^2$  at  $I_{\text{beam}} \approx 1.5 \text{ x}$ 

# Beam test 2009 results radiation protection issues



RP - the detected radiation level is factor 6 lower than allowed one (3  $\nu$ Sv), in a good agreement with simulations done by COMPASS and CERN RP (pion beam intensity ~8x10^7 pions per spill (9.6 seconds))

The tracking detectors occupancy downstream of hadron absorber is factor 10 lower compare to the normal muon running conditions



#### Proposed DY setup

Beam tests demonstrated the feasibility of the Drell-Yan measurement, and pointed aspects to improve.



• 2 target cells (55 + 55 cm), spaced by 20 cm, filled with NH3, inside solenoid.

• Absorber at least 2 m long ( $Al_2O_3$  + steel), with beam plug (W) inside, 1 m long.

- 2 large area hodoscopes, for dimuon trigger in the 1st spectrometer.
- Possibility to add a vertexing detector between target and absorber.



www

~~~~~~

*

 \sim

DY cross-section and phase space covered

Acceptances

Expected event rates

.....

 ℓ^+

 \sim

With a beam intensity Ibeam = 6×10^7 particles/second, a luminosity of L = 1.2×10^{32} cm⁻²s⁻¹ can be obtained.

π^- momentum	DY rate (/day)		
(GeV/c)	$2 < M_{\mu\mu} < 2.5$	$4 < M_{\mu\mu} < 9$	
160	4600	700	
190	4900	800	
213	5000	900	

Assuming 2 years of data-taking (140 days/year), one can collect: • 230 × 10³ events in DY HMR;

• 1.4×10^6 events in the DY IMR.

$$R = \mathcal{L} \sigma_{\pi^- \mathrm{NH}_3} K_{DY} d_{spill} n_{spill} E_{to}$$

Asymmetries: expected statistical precision

 $\frac{1}{2}$

For π^{-} beam at 190 GeV/c and 2 years of data-taking:

Asymmetry	Dimuon mass (GeV/ c^2)		
	$2 < M_{\mu\mu} < 2.5$	J/ψ region	$4 < M_{\mu\mu} < 9$
$\delta A_U^{\cos 2\phi}$	0.0020	0.0013	0.0045
$\delta A_T^{\sin \phi_S}$	0.0062	0.0040	0.0142
$\delta A_T^{\sin(2\phi+\phi_S)}$	0.0123	0.008	0.0285
$\delta A_T^{\sin(2\phi-\phi_S)}$	0.0123	0.008	0.0285

Example:

$$\delta A_T^{\sin \phi_S}(x_a, x_b) = \frac{1}{f \, |\vec{S}_T|} \, \frac{\sqrt{2}}{\sqrt{N(x_a, x_b)}}$$

Asymmetries: comparing with theory prediction

Asymmetries: comparing with theory prediction

Asymmetries: comparing with theory prediction

Summary

V

www

• Transversity and Sivers PDFs of the nucleon are addressed in COMPASS presently, from semi-inclusive DIS.

The opportunity to study, with the same spectrometer, the TMD PDFs from the Drell-Yan process is unique

- COMPASS experimental conditions probe the valence quarks region, where TMD effects are expected to be sizable ($\tau = M^2/s = 0.05$ to 0.3)
- The feasibility of the measurement was proven, after a series of beam tests.

• The COMPASS-II Proposal has been submitted on May 17th 2010 and recommended to the Research Board for approval.

• COMPASS could start to take DY data in 2013 (in 2012 an accelator shut-down has been foreseen).

