COMPASS: A Facility to study QCD

COMMON MUON and PROTON APPARATUS for STRUCTURE and SPECTROSCOPY

Long Term Plans ≥2012:

Proposal submitted to CERN Scientific Comittee yesterday, 17-05-2010

- \checkmark Test of Chiral Perturb. theory through Primakoff exp. with $\pi,$ K beam and spectroscopy
- \checkmark Transv. Spatial Distrib. GPDs with DVCS and DVMP with μ beams
- Strange PDF and Transv. Mom. Distrib. with SIDIS
 simultaneously with the GPD program
- \checkmark Transv. Mom. Distrib. with Drell-Yan with π and in far future \overline{p} , K

GPD study at COMPASS

GPDs investigated with Hard exclusive photon and meson production

- \checkmark Kinematic domains and Observables
- ✓ Simulations and Projections
 - the t-slope of the DVCS cross section LH₂ target + RPD.....phase 1
 → transverse distribution of partons
 - the Beam Charge and Spin Sum and Difference and Asymm.......phase 1
 → Re T^{DVCS} and Im T^{DVCS} for GPD determination
 - the Transverse Target Spin Asymm......polarised NH₃ target + RPD.....phase 2

 Angular momentum of partons
- \checkmark A first look of exclusive single photon events with RPD in 2008-2009

HARDWARE UPGRADES:

- Muon Trigger
- The new Liquid Hydrogen Target and the Recoil Proton Detector
- Upgrades of Electromagnetic Calorimetry ECAL1-2 + a New ECAL0
- Trackers

Nicole d'Hose, Exclusive Reactions at High Momentum Transfer, JLab, 18 May 2010

What makes COMPASS unique?

Contributions of DVCS and BH at 160 GeV

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} R_{\ell} A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Phase 1: DVCS experiment to constrain GPD H
with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target
 $\mathcal{D}_{cs,\nu} = d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto c_{0}^{Int} + c_{1}^{Int} \cos\phi$ and $c_{0,1}^{Int} \sim R_{\ell}(F_{1}\mathcal{H})$
 $\mathcal{S}_{cs,\nu} = d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + c_{0}^{DVCS} + s_{1}^{Int} \sin\phi$ and $s_{1}^{Int} \sim Im(F_{1}\mathcal{H})$
Using $S_{cs,\nu}$ and integration over ϕ
 $d\sigma^{DVCS} / dt \rightarrow transverse imaging$

Transverse imaging at COMPASS do_{bvcs}/dt ~ exp(-B|t|)

2 years of data 160 GeV muon beam 2.5m LH_2 target $\varepsilon_{global} = 10\%$

> without any model we can extract B(x_B)

Stat~ $\sqrt{(N_{BH}+N_{DVCS})/N_{DVCS}}$ Syst~3% N_{BH}/N_{DVCS}

Transverse imaging at COMPASS do_{bvcs}/dt ~ exp(-B|t|)

with the projected data we can determine :

- B with an accuracy of 0.1 GeV⁻²
- α' with an accuracy ≥ 2.5 σ
 if α' ≥ 0.26 with ECAL1+2
 if α' ≥ 0.125 with ECAL0+1+2

Transverse imaging at COMPASS

 $B(x_B) = \frac{1}{2} < r_{\perp}^2(x_B) >$

distance between the active quark and the center of momentum of spectators

Transverse size of the nucleon mainly dominated by $H(x, \xi=x, t)$ Quark-Dipole Model Regge Phenomenology related to $\frac{1}{2} < b_{\perp}^2(x_B) >$

distance between the active quark and the center of momentum of the nucleon

Impact Parameter Representation

q(x, b₁) -> H(x, ξ=0, †)

Parametrisation with Reggeized (x,t) correlation

Transverse imaging at COMPASS do_{pVMP}/dt ~ exp(-B|t|)

We are sensitive to the nucleon nucleon size + the transverse size of the meson

> $Q^2=1 GeV^2 B \sim 8 GeV^{-2}$ $Q^2=10 GeV^2 B \sim 5.5 GeV^{-2}$

Transverse imaging at COMPASS do_{pVMP}/dt ~ exp(-B|t|)

Deeply Virtual Compton Scattering

<u>Phase 1</u>: DVCS experiment to constrain GPD H with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$\mathcal{D}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \qquad c_0^{Int} + c_1^{Int} \cos\phi \quad \text{and} \quad c_{0,1}^{Int} \sim \mathcal{R}e(\mathcal{F}_1 \mathcal{H})$$

$$\mathcal{S}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \qquad d\sigma^{BH} + c_0^{DVCS} + s_1^{Int} \sin\phi \quad \text{and} \quad s_1^{Int} \sim Im(\mathcal{F}_1 \mathcal{H})$$

$$\xi~\sim x_{B}$$
 / (2- x_{B})

$$\succ Im \mathcal{H}(\xi,t) = H(x=\xi,\xi,t)$$

$$\succ Re \mathcal{H}(\xi,t) = \mathcal{P} \int dx H(x,\xi,t) / (x-\xi)$$

Beam Charge and Spin Difference (using $D_{c_{s,v}}$)

Statistical errors in 280 days

Systematic errors for a 3% charge-dependent effect between μ+ and μ-(control with inclusive evts, BH...)

Beam Charge and Spin Difference over the kinematic domain

Statistics and Systematics

With ECAL2 + ECAL1 + ECAL0

Deeply Virtual Compton Scattering

<u>Phase 2</u>: DVCS experiment to constrain GPD E with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam and transversely polarized NH3 (proton) target

 $\mathcal{D}_{CS,T} = d\sigma_T (\mu^{+\downarrow}) - d\sigma_T (\mu^{-\uparrow})$ $\propto Im(F_2 \mathcal{H} - F_1 \mathcal{E}) \sin(\phi - \phi_S) \cos \phi$

the GPD E allows nucleon helicity flip so it is related to the angular momentum Ji sum rule: $2J_q = \int x (H^q (x,\xi,0) + E^q (x,\xi,0)) dx$ With a transversely polarized NH3 (proton) target:

2 years of data

2008 – 2009 : a small 1m Recoil Proton Detector and a 40cm LH2 target

during the hadron programme

2008 test : Bethe-Heitler signal

~ 8 times more data taken in 2009 to be shared in three x_B domains

2009 test: BH and DVCS events

10 BH events expected → 44 pure DVCS events

Experimental requirements for DVCS $\mu p \rightarrow \mu' p \gamma$

+ trigger upgrades (notably at high Q²)

+ good tracking and identification

RPD design and its electronics

3.6 m long scintillator slabs →~ 300ps timing resolution

Tests made with

- MuRex (a 4m sector prototype)
- The present RPD (1m long)

ECALO

ECAL0 made of

248 modules (12 × 12 cm²) of 9 cells (towers) read by 9 AMPDs

