Hadron Program @COMPASS

Ismail Uman Ludwig-Maximilians-Universitaet Munich 24 September 2009

on behalf of the COMPASS collaboration

QNP09 - 5th Int'l Conference on Quarks and Nuclear Physics Beijing, Sept.21 - Sept.25, 2009

Agenda

- Light quark spectrum and beyond
- Reactions in the COMPASS hadron program
- Detector description
- Data Reconstruction
- Production and decay amplitudes
- PWA formalisms and simulations
- Conclusion

Light quark spectrum and beyond

- Conventional light quark mesons
- Glueballs
- Multiquark states
- Hybrids
- Diffractive scattering: E852@BNL, COMPASS@CERN
- Central production: WA102@CERN , COMPASS@CERN
- Photo-production CLAS@Jefferson
- Lepto-production: COMPASS@CERN

COMPASS hadron program 2008-2009

• Diffractively produced states in:

$$\pi^- p \rightarrow Xp, X \rightarrow \pi^- \pi^+ \pi^-, K \overline{K} \pi^-, \eta \eta \pi^-, \eta \pi^- \dots$$

• Centrally produced states in:

$$\pi^- p \rightarrow \pi^- Y p, Y \rightarrow \pi \pi, K \overline{K}, \eta \eta, \eta \eta', 4 \pi, \dots$$

• Proton beam:

$$pp \to Xp, X \to p\pi^{+}\pi^{-}, pK \overline{K}, p\eta\eta, \dots$$
$$pp \to p_{fast} Yp_{slow}, Y \to \pi\pi, K \overline{K}, \eta\eta, \dots$$

• Kaon beam:

$$K^- p \rightarrow Xp, X \rightarrow K^- \pi^+ \pi^- p, \dots$$

COMPASS@CERN

- Tracking: Straw, Drift chambers, MicroMegas, Sandwich Veto, PixelGEM, Recoil Proton Detector, ...
- ECAL1 (4x2.9 m) 1500 GAMS, MAINZ and OLGA cells
- ECAL2 (2.4x1.8 m) 3086 SHASHLYK and GAMS cells
- ECAL LED and LASER monitoring system
- RICH

CEDAR

- Cerenkov differential counters with achromatic ring focus
- 2 vessels with 8 photo-multipliers each
- π , K and π identification

RICH

- 8 chambers 576x1152 mm²
- large angle spectrometer 250x200 mrad
- π , K and p separation up to ~40 GeV/c

RPD

12 A scintillators: t=0.5cm L=50cm l=6.5cm

24 B scintillators: t=1cm L=106cm l=20cm

 R_{A} =12.5cm R_{B} =75.5cm

- detect recoiling proton from 0.27 to 2 GeV in 60'< θ <90' and ϕ =2 π
- z_A (ring A) and z_B (ring B)
- Time of flight and energy loss measurement: p, π identification

2008 data reconstruction: vertex fitter

Multiple vs. one outgoing track vertex fitter performance

2008 data: exclusivity with RPD

one track +neutral vs all charged final state

 $\pi^- p \rightarrow \pi^- \eta \eta p$

$\eta \rightarrow \gamma_1 \gamma_2, \eta \rightarrow \gamma_3 \gamma_4$

 $\pi^- p \rightarrow \pi^- \eta \eta p$ at 190 GeV

I=0, J=0⁺⁺,2⁺⁺,4⁺⁺,...

12

All charged channel: $\pi^- p \rightarrow 5\pi p$

13

 $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p \ 2008 \ \text{vs.} \quad \pi^{-} Pb \rightarrow \pi^{-} \pi^{+} \pi^{-} Pb \ 2004$

there will be also $\pi^- Pb \rightarrow \pi^- \pi^+ \pi^- Pb$ data in 2009!

 $\pi^- p \rightarrow \pi^- K_s K_s p$

1.5

0

1

2

2.5

3

m(KK)/GeV

Production amplitude for central X(MC)

- M_{χ} uniform [2m_{η}, 2.5 GeV]
- flatrapidity y_{x} [-1,1]
- t_{π} , t_{p} as e^{-t}, b~6.0 [0,1]
- ϕ_{π} , ϕ_{p} uniform [0,2 π]

 $x_F(MC)$

1.1<M(ηη)<2.5 GeV

Production amplitude for diffractive X(MC)

- + M_{χ} uniform [m_{\pi}+m_{\eta} ,2.5 GeV]
- t_x as e^{-t}, b~6.0 [0,1]
- φ_{X} , φ_{p} uniform [0,2\pi]

Decay amplitude for central or diffractive X

z axis defined by the beam.

- Boost to π -p c.m. frame.
- Wick rotation by θ and ϕ
- Boost to X rest frame (x',y',z')
- rotation back by $-\phi$ and $-\theta$

direction of x",y",z" \equiv direction of x,y,z η with final momenta different from those in the overall π -p rest frame.

Decay amplitude: $A_J = Ge^{i\delta}F_J(q)\frac{Y_J(\alpha)}{m_0^2 - s - im_0\Gamma(m)}$

Intensity with two resonances $X_J(m_0)$, $Y_{J'}(m_{0'})$:

 $w(m, m_0, m'_0) = |A_{X_J}(m, m_0)|^2 + |A_{Y_{J'}}(m, m'_0)|^2 + 2\Re(A_{X_J}(m, m_0)A_{Y_{J'}}(m, m'_0))|_{19}$

Minimization

Standard log-likelihood definition:

$$L = \prod_{i=1}^{N_{events}} w(\alpha)$$

$$\alpha \equiv G_{\lambda}, \delta_{\lambda}, m_{0,} \Gamma_{0,} J^{PC}$$

$$S = -\ln L = -\sum_{i=1}^{N_{DATA}} \ln w_i + N_{DATA} \ln \left(\sum_{j=1}^{N_{MC}} w_j \right)$$

Minimization with FUMILI on event per event basis old PWA: mass indipendent angular fit +mass dependent log-likelihood fit new PWA: mass dependent global fit advantage: reduce the number of non-mathematical ambiguities disadvantage: CPU time

Simulation of Partial Waves

Ingredients of the simulations and fit

	Generated	Fit without	Fit after
		detector effects	detector simulation
0^{++} total (including background)			
Rate [%]	78.2	76.8	84.0
$f_0(1370)$			
$M \left[\text{GeV}/c^2 \right]$	1.312	1.310 ± 0.005	$\boldsymbol{1.308 \pm 0.004}$
$\Gamma \ [\text{GeV}/\text{c}^2]$	0.340	$\textbf{0.392} \pm \textbf{0.019}$	0.415 ± 0.028
Rate [%]	21.3	21.8	26.0
$\mathbf{f}_0(1500)$			
$M [GeV/c^2]$	1.502	$\boldsymbol{1.507 \pm 0.002}$	1.502 ± 0.002
$\Gamma \ [\text{GeV}/\text{c}^2]$	0.100	0.114 ± 0.004	0.130 ± 0.005
Rate [%]	13.2	13.9	17.9
$\mathbf{f}_0(1710)$			
$M \left[GeV/c^2 ight]$	1.727	$\boldsymbol{1.726\pm0.002}$	${\bf 1.719} \pm {\bf 0.003}$
$\Gamma \ [\text{GeV}/\text{c}^2]$	0.126	0.141 ± 0.005	0.129 ± 0.005
Rate $[\%]$	14.2	15.0	13.1
incoherent S-wave background			
Rate [%]	29.5	26.1	27.0
2^{++} total			
Rate $[\%]$	15.9	16.4	12.7
$\mathbf{f}_2(1270)$			
$M \left[\text{GeV}/c^2 \right]$	1.270	1.277 ± 0.011	1.304 ± 0.008
$\Gamma \ [\text{GeV}/\text{c}^2]$	0.170	0.193 ± 0.022	$\boldsymbol{0.162\pm0.019}$
Rate $[\%]$	1.28	1.7	0.6
${f f}_2(2150)$			
$M [GeV/c^2]$	2.130	$\textbf{2.130} \pm \textbf{0.003}$	$\textbf{2.093} \pm \textbf{0.004}$
$\Gamma [\text{GeV}/\text{c}^2]$	0.270	0.257 ± 0.009	0.306 ± 0.014
Rate [%]	14.58	14.7	12.1

Comparison with the BNL program (Chung et al.) MC

Gottfried-Jackson

Decay frame (PWA2) after Wick rotations

on average α shape is equivalent to θ_{GJ} shape

Conclusion and Outlook

- Exotic $\pi(1600)$ decaying to 3π has been observed.
- $f_0(1500)/f_2$ (1525) decaying to $\eta\eta$ has been observed.
- COMPASS started massive amplitude analysis in the light quark sector.

Goal: BNL and WA102 results with much higher statistics. Plus: centrally and diffractively produced resonances will be fitted simultaneously with two indipendent formalisms.