

Polarized Drell-Yan in the C MPASS Experiment

Catarina Quintans (LIP-Lisbon) on behalf of the COMPASS Collaboration

Mainz, 31 March 2009

Outline

- Transverse Momentum Dependent PDFs
- Accessing PDFs from Drell-Yan process
- Polarized Drell-Yan in COMPASS
- DY@COMPASS wrt past and future experiments

The nucleon is fully described by a set of structure functions that can be built from the knowledge of the parton distribution functions (PDFs) – in a given constituents model of the nucleon.

In the parton model in LO, if the transverse momentum of partons is neglected (k_T integrated):

• 3 parton distribution functions dependent on (x)

If the transverse momentum of partons is also considered $(k_T \text{ dependence})$:

• 8 parton distribution functions dependent on (x, k_T^2)

- $f_1(x, k_T^2)$: unpolarized. Integrated in k_T^2 gives the usual $f_1(x)$.
- $g_{1L}(x, k_T^2)$: longitudinally polarized. When integrated over k_T^2 it is the helicity function $g_1(x)$. From its 1st moment one can obtain $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

← COMPASS DIS and SIDIS results: PLB647(2007)8-17; PLB647(2007)330-340; PLB660(2008)458-465.

• $h_1(x, k_T^2)$: transversely polarized. When integrated over k_T^2 it survives, giving the transversity function $h_1(x)$.

→COMPASS SIDIS results:
 PRL94(2005)202002;
 NPB765(2007)31-70;
 PLB673(2009)127-135.

- $f_{1T}^{\perp}(x, k_T^2)$: Sivers function. It describes the distortion of the probability distribution of a non-polarized quark when it is inside a transversely polarized nucleon.
 - ← COMPASS DIS results:

PRL94(2005)202002;

NPB765(2007)31-70;

PLB673(2009)127-135.

- $h_1^{\perp}(x, k_T^2)$: Boer-Mulders function. It describes the correlation between the transverse spin and the transverse momentum of a quark inside the unpolarized hadron.
- $h_{1T}^{\perp}(x, k_T^2)$: Pretzelosity function. It describes the transverse polarization of a quark, along its intrinsic k_T direction. It allows to access the orbital angular momentum information.

These 3 PDFs are Transverse Momentum Dependent (TMD). The first 2 are also time reversal odd (T-odd).

Polarized structure functions can be accessed from spin asymmetries.

In deep inelastic scattering (DIS) experiments, like COMPASS, with beam and target polarized:

The μ -deuteron asymmetry is measured from the difference between cross-sections from 2 oppositely polarized target cells:

$$A^{\mu d} = \frac{1}{f P_T P_B} \left(\frac{N^{\leftrightarrows} - N^{\overleftarrow{\leftarrow}}}{N^{\overleftarrow{\Rightarrow}} + N^{\overleftarrow{\leftarrow}}} \right)$$

f: target dilution factor P_T : target polarization P_B : beam polarization.

COMPASS accesses the Sivers PDF from semi-inclusive DIS (SIDIS). Another possible way to do it is via the Drell-Yan process (DY)

The physics asymmetry is given by the convolution of structure functions with fragmentation functions:

The spin asymmetry is proportional to a product of structure functions. If unpolarized beam and transversely polarized target:

 $A_{Sivers} \propto 2 \frac{\sum_{q} e_{q}^{2} f_{1q}(x_{1}) f_{1Tq}^{\perp(1)}(x_{2})}{\sum_{q} e_{q}^{2} \bar{f}_{1q}(x_{1}) f_{1q}(x_{2})}$

In the Collins-Soper frame:

 θ , ϕ : lepton pair wrt hadrons plane. ϕ_{S2} : spin-vector S_{2T} wrt lepton plane, if transversely polarized hadron target.

The phase-space is defined by the variables x_1 and x_2 :

$$x_F = x_1 - x_2 = \frac{2p_L}{\sqrt{s}}$$

$$\tau = \frac{M^2}{s} = x_1 \cdot x_2$$

Drell-Yan is purely electromagnetic process. Its cross-section is exactly calculable.

Drell-Yan angular distribution (unpolarized):

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}(1+\lambda\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi)$$

Lam-Tung sum rule: $|1 - \lambda - 2\nu = 0|$

In LO and collinear approx., we get the usual: $\lambda=1$ and $\nu=\mu=0.$

This sum rule was seen to be violated in past experiments at CERN (NA10) and FERMI-LAB (E615) – $\cos 2\phi$ modulation, up to 30%!

Such modulation amplitude can arise from the product of 2 Boer-Mulders functions: (beam PDF \otimes target PDF).

Having a transversely polarizable target available, one can study both unpolarized and polarized Drell-Yan:

- Unpolarized DY $d\sigma^{DY} \propto \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1^{\perp}(x_2, k_{T2}^2) \cos 2\phi$ \uparrow Boer-Mulders \uparrow
- Single polarized DY $d\sigma^{DY} \propto \overline{f}_1(x_1, k_{T1}^2) \otimes f_{1T}^{\perp}(x_2, k_{T2}^2) \sin(\phi - \phi_{S2}) +$ \uparrow Sivers $+ \overline{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1(x_2, k_{T2}^2) \sin(\phi + \phi_{S2}) +$ \uparrow Boer-Mulders \uparrow Transversity $+ \overline{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_{1T}^{\perp}(x_2, k_{T2}^2) \sin(3\phi - \phi_{S2}) +$ \uparrow Boer-Mulders \uparrow Pretzelosity

...learning from Drell-Yan

In practice, to access the polarized PDFs, like for example Sivers, in the experiment we measure a single spin asymmetry:

$$A_N^{\sin(\phi_{S2}-\phi)} = \frac{\int_0^{2\pi} (d\sigma^{\uparrow} - d\sigma^{\downarrow}) \sin(\phi_{S2} - \phi) d\phi}{\frac{1}{2} \int_0^{2\pi} (d\sigma^{\uparrow} + d\sigma^{\downarrow}) d\phi}$$

Anselmino et al., Phys.Rev.D 79:054010, 2009

• Sizable spin asymmetries are expected

Confronting Drell-Yan and SIDIS results provides a crucial test of non-perturbative QCD

 \hookrightarrow Check the predictions:

$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$
$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

due to the T-odd character of the Sivers and Boer-Mulders functions.

 J/ψ production mechanisms are still nowadays a subject of research.

 J/ψ and γ being vector particles, the analogy between J/ψ and DY production mechanisms might be of interest:

$$\pi p \to J/\psi X \to \mu^+ \mu^- X$$
 $\pi p \to \gamma^* X \to \mu^+ \mu^- X$

 J/ψ production via $q\bar{q}$ annihilation dominates at low-energies, justifying such analogy – J/ψ -DY duality.

From the study of J/ ψ production in the dileptons decay channel:

- Check duality hypothesis polarized J/ ψ production cross-section
- Access PDFs from J/ ψ events larger statistics available

COMPASS has a multipurpose spectrometer:

- Availability of both muon and pion beams
- Unique polarized target, well suited for transversity studies
- 2-stage spectrometer with wide angular acceptance
- A muon detection system
- Physicists community with know-how on both Drell-Yan physics and transversity physics

Experimentally, there is a window of opportunity for COMPASS to perform this measurement.

The COMPASS spectrometer (2007)

Signal and background

The dimuon mass spectrum is known from past DY experiments:

• $M < 2.5 \text{ GeV/c}^2$: Large physics background from decays $D \rightarrow \mu^{\pm} X$

Combinatorial background

- π and K decaying to $\mu\nu$
 - Absorber option
- J/ ψ and ψ ' region: the charmonium polarization is itself a subject of research.
- M > 4. GeV/c²: safe region to study
 Drell-Yan

Absorber and Trigger

In 2007 and 2008, short Drell-Yan beam tests were performed. →without an hadron absorber, the detectors occupancy is too large.

By adding an absorber between the target and the 1st spectrometer detectors, one can reduce drastically the combinatorial background.

But:

- Only $DY \rightarrow \mu^+\mu^-$ channel remains accessible
- The vertex resolution is degraded.

DY cross-section and acceptance

From Pythia:

σ^{DY} (nb)	$2.0 < M_{\mu\mu} < 2.5$ (GeV/c ²)	$4. < M_{\mu\mu} < 9. \text{ (GeV/c}^2\text{)}$
s=100 GeV 2 , p_π =73 GeV/c	0.9	0.03
s=200 GeV 2 , p_π =106 GeV/c	1.2	0.10
s=300 GeV 2 , p_π =160 GeV/c	1.4	0.17
s=400 GeV 2 , p_π =213 GeV/c	1.6	0.24

COMPASS acceptance is in the valence quarks region (x > 0.1). This is also the best region to measure the spin asymmetries, as expected from theory predictions.

For the moment, the COMPASS spectrometer has only a single muon trigger, from hodoscope stations (in the SAS).

DY simulations show, for the accepted dimuons, that:

- \approx 50% have both muons in the 1st spectrometer
- \approx 40% have one muon in 1st and another in 2nd spectrometer
- <10% have both muons in the 2nd spectrometer</p>

A dimuon trigger in the 1st spectrometer will be build, from large area hodoscopes.

Radiation conditions

With maximum target length (120cm) and a π^- beam of 190 GeV/c with maximum intensity ($6 \times 10^7 \pi^-/s$):

Luminosity: $L = l_{eff} \rho_{NH3} F_f N_A I_{beam} \approx 1.7 \times 10^{33} cm^{-2} s^{-1}$

DY event rate per day: $R = L \sigma_{\pi p} t_{spill} n_{spill} \epsilon_{tot}$ with $t_{spill} = 9.6s$; $n_{spill} = 1800$ /day; $\epsilon_{tot} = 0.14$ includes all efficiencies and acceptance

- Event rate (/day): 1000 with 4. < M < 9. GeV/c²; and 6500 with 2. < M < 2.5 GeV/c².
- In 2 years of data-taking (assuming 140 run days/year), one can collect > 200000 DY events with 4. < M < 9. GeV/c²

Depending on the number of bins, the statistical error in the asymmetry is expected to be:

 $\delta A^{\sin(\phi_{S2}-\phi)} \approx 1 - 2\%$

Predictions for the Sivers asymmetry in the COMPASS phase-space, for the mass region 4. < M < 9. GeV/c², compared to the expected statistical errors of DY@COMPASS:

Aut

-0.04

- solid and dashed: Efremov et al,
 PLB612(2005)233;
- dot-dashed: Collins et al,
 PRD73(2006)014021;
- solid, dot-dashed: Anselmino et al, PRD79(2009)054010;
- boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al, PRD78(2008)074010.

Polarized Drell-Yan in the COMPASS experiment

Experiment	Beam (GeV/c)	Targets	Physics
NA3	π^\pm 150/200/280	H_2 , Pt	π , K PDFs
NA10	π^- 140/194/284	D, W	π PDFs, Boer-Mulders PDF
E615	π^- 252	W	π , K PDFs, Boer-Mulders PDF
NA51	p 450	H_2,D	$ar{d}/ar{u}$ asymmetry in proton
E866	p 800	H_2,D	$ar{d}/ar{u}$ asymmetry in proton
COMPASS	π^- 160/190	NH ₃	Sivers, Boer-Mulders, Transversity

- A long history of successful DY experiments
- Up to now, none with beam and/or polarized target for access to the spin dependent PDFs
- Limited I_{beam} in COMPASS, but large angular acceptance.
- The critical issue being the small σ_{DY} , to have significant integrated luminosity one needs considerable running period.

Several experiments are being planned, to study polarized Drell-Yan:

Facility	type	s (GeV ²)	timeline
RHIC (STAR)	collider, p [↑] p	200^2	> 2013
J-PARC	fixed target, $p^{\rightarrow\uparrow}$ D	60 – 100	> 2014
FAIR (PAX)	collider, $ar{p}^{\uparrow}$ p $^{\uparrow}$	200	> 2016
NICA	collider, $p^{\uparrow} p^{\uparrow}$, $D^{\uparrow} D^{\uparrow}$	676	> 2014
COMPASS	fixed target, $\pi^{\pm} \mathbf{H}^{\to\uparrow}$, $\pi^{\pm} \mathbf{D}^{\to\uparrow}$	300 - 400	> 2010

Summary

- The COMPASS spin physics program is presently addressing the transversity and Sivers PDFs of the nucleon, among other topics.
- A natural sequence to this program is to study the Transverse Momentum Dependent PDFs of nucleon and pion.
- These can be accessed from the polarized Drell-Yan process.
- It allows an important test of non-perturbative QCD, by comparing the Sivers PDF obtained by SIDIS and by DY processes.
- 2 tests beams have been performed in COMPASS, demonstrating the feasibility of the DY measurement in COMPASS.
- The radiation conditions, and the necessary modifications to the spectrometer are being studied.
- COMPASS has good prospects to make this measurement for the first time.

The end