Transverse Spin Structure with muon beam and Drell-Yan measurements at COMPASS

Anna Martin

Trieste University and INFN

on behalf of the COMPASS Collaboration

SPIN-Praha-2009 ADVANCED STUDIES INSTITUTE SYMMETRIES AND SPIN

Transverse Spin Structure of the Nucleon

international theoretical and experimental effort

hard pp scattering: spin experiments at RHIC / BNL

OUTLINE

- the COMPASS experiment
- the spin structure of the nucleon
- transverse spin effects in SIDIS
 - transversity and Collins asymmetry
 - Sivers function and asymmetry
 - future measurements at COMPASS
- transverse spin effects in Drell-Yan
 - spin asymmetries
 - COMPASS plans

Common Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS approved in 1997 with a broad physics programme

hadron beams:

OMPAS

- hadron spectroscopy
 - search for exotics
 - pion/kaon polarizabilities

muon beam:

- nucleon spin structure
 - ∆G/G
 - helicity distributions
 - transverse spin effects

SPIN-Praha-2009

A. Martin

Common Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS approved in 1997 with a broad physics programme

data taking s	L: E. Zemlianishkina B. Pawlukiewicz			today	
muon beam	deuteron (⁶ LiD) polarised target		2002 2003 2004	L/T ta 4:1	arget polarisation T: G. Pesaro, tomorrow
			2006	L target polarisation	
	proton (NH ₃) polarised targ	et	2007	L /T t 1:1	arget polarisation
hadron beam	LH target		2008 2009		J. Bernhard P. Jasinski
					I. Schlueter today

muon beam: 160 GeV/c longitudinal polarisation -80%

intensity 2.10⁸ µ⁺/spill (4.8s/16.2s)

COMPASS spectrometer – muon beam

- high energy beam
- large angular acceptance
- broad kinematical range

two stages spectrometer Large Angle Spectrometer (SM1) Small Angle Spectrometer (SM2)

COMPASS spectrometer – muon beam

The Target System

solid state target operated in frozen spin mode

during data taking with transverse polarization, polarization reversal after ~ 4-5 days

SPIN-Praha-2009

A. Martin

OUTLINE

the COMPASS experiment

- the spin structure of the nucleon
- transverse spin effects in SIDIS
 - transversity and Collins asymmetry
 - Sivers function and asymmetry
 - future measurements at COMPASS
- transverse spin effects in Drell-Yan
 - spin asymmetries
 - COMPASS plans

Structure of the Nucleon

key process: Deep Inelastic Scattering

the lepton interacts with a nucleon's parton exchanging a virtual photon

q virtual photon four-momentum $Q^2 = -q^2 > 0$ v = E - E' $x = Q^2/2Mv$ y = v/E $\gamma = \sqrt{Q^2}/v$

 $Q^2 >> M^2$ $W^2 = (P+q)^2 >> M^2$

Inclusive DIS: only the incident and scattered leptons are measured

q

Semi-Inclusive DIS: the incident and scattered leptons, and at least one final state hadron are measured

$$\boldsymbol{\sigma}^{\ell N \to \ell h X} \propto \sum \boldsymbol{\sigma}^{\ell q \to \ell q} \otimes q(x) \otimes D_q^h(z)$$

 $z = E_h / v$

COMPASS kinematics

SPIN-Praha-2009

wide kinematical range

A. Martin

COMPASS kinematics

A. Martin

Structure of the Nucleon

three distribution functions are necessary to describe the quark structure of the nucleon at LO:

q(x): number density or unpolarised distribution f_1 oprobability density of finding a quark with a fraction x
of the longitudinal momentum of the parent nucleonvery well
known $\Delta q(x) = q^{=} - q^{=}$: longitudinal polarization or helicity distribution

$g_1 \longrightarrow - \longleftarrow$

in a longitudinally polarised nucleon, probability density of finding a quark with a momentum fraction x and spin parallel to that of the parent nucleon

known

well

OUTLINE

- the COMPASS experiment
- the spin structure of the nucleon
- transverse spin effects in SIDIS
 - transversity and Collins asymmetry
 - Sivers function and asymmetry
 - future measurements at COMPASS
- transverse spin effects in Drell-Yan
 - spin asymmetries
 - COMPASS plans

Transversity distribution

- 1 1
- proposed in '79 (Ralston & Soper), reappraised in '90
- properties
 - $\Delta_{\mathsf{T}} \mathsf{q}(\mathsf{x}) \neq \Delta \mathsf{q}(\mathsf{x})$
 - probes the relativistic nature of quark dynamics
 - no contribution from the gluons \rightarrow simple Q² evolution
 - positivity (Soffer) bound
 - first moment: tensor charge
 - sum rule for transverse spin in Parton Model framework
 - it is related to GPD's
 - is chiral-odd
 - more difficult to measure

 $2|\Delta_{T}q| \le q + \Delta q$ $\Delta_{T}q \equiv \int dx \, \Delta_{T}q(x)$

$$\frac{1}{2} = \frac{1}{2} \sum \Delta_{\tau} \mathbf{q} + \mathbf{L}_{q} + \mathbf{L}_{g}$$

Bakker, Leader, Trueman, PRD 70 (04)

 $\Delta_{T}q(x)$ is chiral-odd

→ cannot be measured in inclusive DIS

it can be measured in SIDIS on transversely polarized targets: the observable is the convolution of $\Delta_T q(x)$ with another chiral-odd quantity

> several channels are being investigated → G. Pesaro talk

in $\ell N^{\uparrow} \rightarrow \ell' h X$

the chiral-odd partner is the "Collins" fragmentation function, which describes a possible left-right asymmetry of the hadrons in the hadronization process of a transversely polarized quark

Collins asymmetry

- recently measured by HERMES (proton target) and COMPASS (deuteron and proton targets)
- convincing evidence that it is non zero from the proton data

Collins asymmetry

SIDIS results

clear non-zero effects first seen by HERMES on p

SPIN-Praha-2009

1.5

 p_T^h (GeV/c)

1

0.4

0.6

0.8

Z.

0.5

0.2

х

SIDIS results

Collins asymmetry

 10^{-2}

 10^{-1}

- clear non-zero effects first seen by HERMES on p
- ~ zero asymmetries measured by COMPASS on d over the whole x-range understood as u – d cancellation

Collins asymmetry

SIDIS results

- clear non-zero effects first seen by HERMES on p
- ~ zero asymmetries measured by COMPASS on d o understood as u – d cancellation

independent measurement of Collins effect using

BELLE $e^+e^- \rightarrow \pi^+\pi^- X$ data (first measurements from LEP data)

SPIN-Praha-2009

Collins asymmetry

COMPASS

new preliminary results

from COMPASS <u>proton</u> target run in 2007 (much interest in the international community)

large signal in the valence region

Collins asymmetry

new preliminary results

from COMPASS proton target run in 2007

conclusion:

transversity is different from zero and

can be measured in SIDIS thanks to the "Collins effect"

the work has just started

conclusion:

transversity is different from zero and

can be measured in SIDIS thanks to the "Collins effect"

the work has just started

more data are needed to map the Q^2 , x, z and p_{\perp} dependence

Structure of the Nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order 8 PDFs are needed for a full description

"TMDs" interesting properties

SIDIS cross-section

leading order

 g_{1T}

SIDIS cross-section

presently, the most "famous" TMD PDFs are:

• the Boer-Mulders function

correlates the quark transverse spin and the quark k_t (unpol. N)

• the Sivers function

correlates the nucleon spin and the quark k_t (tr. pol. N)

• and

which correlates the quark transverse spin and the quark k_t (tr. pol. N)

$$d^{6}\sigma \approx \frac{4\pi a^{2}sx}{Q^{4}} \cdot \frac{\left\{\left[1+(1-y)^{2}\right]\sum_{q}e_{q}^{2}f_{1}^{q}(x)D_{1}^{q}(z,p_{h\perp}^{2})\right\} + \left(1-y\right)\frac{p_{h\perp}^{2}}{4z^{2}M_{N}M_{h}}\cos(2\phi_{h})\sum_{q}e_{h}^{1}h_{1}^{(1)q}(x)H_{1}^{\perp q}(z,p_{h\perp}^{2})\right) \\ -\left|S_{L}\right|(1-y)\frac{p_{h\perp}^{2}}{4z^{2}M_{N}M_{h}}\sin(2\phi_{h})\sum_{q}e_{q}^{2}h_{1L}^{\perp(1)q}(x)H_{1}^{\perp q}(z,p_{h\perp}^{2})\right) \\ -\left|S_{T}\right|(1-y)\frac{p_{h\perp}}{zM_{h}}\sin(\phi_{h}+\phi_{s})\sum_{q}e_{q}^{2}h_{1L}^{q}(x)H_{1}^{\perp q}(z,p_{h\perp}^{2})\right) \\ +\left|S_{T}\right|(1-y+\frac{1}{2}y^{2})\frac{p_{h\perp}}{zM_{N}}sin(\phi_{h}-\phi_{s})\sum_{q}e_{q}^{2}f_{1T}^{\perp(1)q}(x)D_{1}^{q}(z,p_{h\perp}^{2}) \\ +\left|S_{T}\right|(1-y)\frac{p_{h\perp}}{6z^{3}M_{N}^{2}M_{h}}sin(3\phi_{h}-\phi_{s})\sum_{q}e_{q}^{2}h_{1T}^{\perp(2)}(x)H_{1}^{\perp q}(z,p_{h\perp}^{2}) \\ +\lambda_{e}|S_{L}|y(1-\frac{1}{2}y)\sum_{q}e_{q}^{2}g_{1}^{q}(x)D_{1}^{q}(z,p_{h\perp}^{2}) \\ +\lambda_{e}|S_{T}|y(1-\frac{1}{2}y)\frac{p_{h\perp}}{zM_{N}}cos(\phi_{h}-\phi_{s})\sum_{q}e_{q}^{2}g_{1T}^{(1)q}(x)D_{1}^{q}(z,p_{h\perp}^{2})\}$$

all important for assessing the orbital angular momentum of the quarks

SPIN-Praha-2009

A. Martin

Sivers function

correlates the nucleon spin and the quark k_t (transversely polarised nucleon)

- proposed in 1990
- initially thought to be zero (Collins, 1993)
- resurrected in 2002 (Brodsky, Hwang, Schmitt) FSI, gauge link ...
- if different from zero, it should be responsible of a modulation in $\Phi_{\rm S} = \phi_{\rm h} \phi_{\rm S}$ of the hadron produced inclusively on a transversely polarized target

SIDIS cross-section

the Collins and the Sivers terms depend on *different angles* and both asymmetries can be extracted from the same data (as done by COMPASS and HERMES)

all the structure functions can be extracted simultaneously from the different azimuthal modulations

$$d^{6}\sigma \approx \frac{4\pi a^{2}sx}{Q^{4}} \cdot \left\{ [I + (I - y)^{2}] \sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z, p_{h\perp}^{2}) + (I - y) \frac{p_{h\perp}^{2}}{4z^{2}M_{N}M_{h}} \cos(2\phi_{h}) \sum_{q} e_{q}^{2} h_{1}^{\perp(1)q}(x) H_{1}^{\perp q}(z, p_{h\perp}^{2}) - |S_{L}|(I - y) \frac{p_{h\perp}^{2}}{4z^{2}M_{N}M_{h}} \sin(2\phi_{h}) \sum_{q} e_{q}^{2} h_{1L}^{\perp(1)q}(x) H_{1}^{\perp q}(z, p_{h\perp}^{2}) - |S_{T}|(I - y) \frac{p_{h\perp}}{zM_{h}} \sin(\phi_{h} + \phi_{s}) \sum_{q} e_{q}^{2} h_{1}^{\perp(x)}(x) H_{1}^{\perp q}(z, p_{h\perp}^{2}) + |S_{T}|(I - y + \frac{1}{2}y^{2}) \frac{p_{h\perp}}{zM_{N}} sin(\phi_{h} - \phi_{s}) \sum_{q} e_{q}^{2} f_{1T}^{\perp(1)q}(x) D_{1}^{q}(z, p_{h\perp}^{2}) + |S_{T}|(I - y) \frac{p_{h\perp}}{6z^{3}M_{N}^{2}M_{h}} sin(3\phi_{h} - \phi_{s}) \sum_{q} e_{q}^{2} h_{1T}^{\perp(2)q}(x) H_{1}^{\perp q}(z, p_{h\perp}^{2}) + \lambda_{e} |S_{T}|y(I - \frac{1}{2}y) \sum_{q} e_{q}^{2} g_{1}^{q}(x) D_{1}^{q}(z, p_{h\perp}^{2}) + \lambda_{e} |S_{T}|y(I - \frac{1}{2}y) \frac{p_{h\perp}}{zM_{N}} cos(\phi_{h} - \phi_{s}) \sum_{q} e_{q}^{2} g_{1T}^{(1)q}(x) D_{1}^{q}(z, p_{h\perp}^{2}) \}$$

Sivers asymmetry

A. Martin

Sivers asymmetry

SIDIS results

SP

- strong signal seen by HERMES in π^+ production on transversely polarized protons
- no signal seen by COMPASS on transversely polarized deuterons, interpreted as u- and d-quark cancellation (as for the Collins asymmetry)

2 ⟨sin(φ-φ_S))^π

0.1

0.08

0.06

0.04 0.02 HERMES PRELIMINARY 2002-2005

Sivers amplitudes protontarge

COMPASS preliminary results from 2007 proton data

Transversity 2008

- no signal over the whole x range
- marginal compatibility with HERMES π⁺ data

an "intriguing result"

comparison with recent predictions

SPIN-Praha-2009

A. Martin

COMPASS preliminary results from 2007 proton data

new high energy data are necessary to clarify the energy dependence suggested by the COMPASS result new data will also allow to perform precise measurements of the K Sivers asymmetry

Transverse Spin Effects in SIDIS

one year (150 days) of data taking at COMPASS with the transversely polarised proton target, and the present spectrometer and muon beam, will allow to improve the knowledge of transversity and will clarify the Sivers issue

projected statistical errors for the Sivers asymmetry

Transverse Spin Effects in SIDIS

one year (150 days) of data taking at COMPASS with the transversely polarised proton target, and the present spectrometer and muon beam, will allow to improve the knowledge of transversity and will clarify the Sivers issue

REQUEST TO CERN SPSC:

(CERN-SPSC-2009-003 SPSC-I-238, 21 January 2009; CERN-SPSC-2009-025/M-769, Addendum2 to the COMPASS Proposal, June 2009)

run one full year with transversely polarised proton target in 2010, to perform new precise measurements of transverse spin effects in SIDIS agreed!

and one full year with longitudinally polarised proton target

this new measurement will mostly conclude the exploratory phase of transverse spin effects in SIDIS

more systematic measurements in SIDIS will be needed in future, and CERN can have an important role

→ F. Kunne talk

OUTLINE

- the COMPASS experiment
- the spin structure of the nucleon
- transverse spin effects in SIDIS
 - transversity and Collins asymmetry
 - Sivers function and asymmetry
 - future measurements at COMPASS
- transverse spin effects in Drell-Yan
 - spin asymmetries
 - COMPASS plans

in hadron-hadron scattering a quark and an antiquark annihilate in a timelike virtual photon which decays in a lepton pair

the phase-space is defined by the variables x_1 and x_2

$$x_F = x_1 - x_2 = \frac{2p_L}{\sqrt{s}}$$
$$\tau = \frac{M^2}{s} = x_1 \cdot x_2$$

- \sqrt{s} total energy
- p_L longitudinal momentum of the lepton pair
- *M* invariant mass of the lepton pair

SPIN-Praha-2009

DY

cross section ~ convolution of PDFs

complementary information

SIDIS cross section

~ convolution of PDF and FF

to access TMDs measurement of azimuthal distributions of the lepton plane

Collins-Soper frame θ, ϕ

angular distribution (unpolarized)

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}(1+\lambda)\cos^2\theta + \mu\sin 2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos 2\phi)$$

at LO and in the collinear approximation one gets

$$\begin{array}{c} \lambda = 1 \\ \nu = \mu = 0 \end{array}$$

QCD corrections: Lam-Tung sum rule

$$1 - \lambda - 2\nu = 0$$

SPIN-Praha-2009

Lam-Tung sum rule:

 $1 - \lambda - 2\nu = 0$

large violations of the sum rule seen in experiments at CERN (NA10) and FNAL (E615)

 $\cos 2\phi$ modulation, up to 30%

such a modulation could arise from the product of 2 Boer-Mulders functions: (beam PDF \otimes target PDF)

 $\begin{array}{c} d\sigma^{DY} \propto \bar{h}_{1}^{\perp}(x_{1},k_{T1}^{2}) \otimes h_{1}^{\perp}(x_{2},k_{T2}^{2}) \cos 2\phi \\ \uparrow \text{ Boer-Mulders} \uparrow \end{array}$

a long history of successful DY experiments

Experiment	Beam (GeV/c)	Targets	Physics
NA3	π^{\pm} 150/200/280	H_2 , Pt	$\pi, K PDFs$
NA10	π^- 140/194/284	D, W	π PDFs, Boer-Mulders PDF
E615	π^- 252	W	π, K PDFs, Boer-Mulders PDF
NA51	p 450	H_2, D	$ar{d}/ar{u}$ asymmetry in proton
E866	p 800	H_2, D	$ar{d}/ar{u}$ asymmetry in proton

up to now, none with beam and/or polarized target to access the spin dependent PDFs

COMPASS can do it

on a transversely polarized target

Collins-Soper frame

θ, φ

 ϕ_{S2} target transverse spin vector S_{2T} wrt lepton plane

→ access spin dependent TMDs

$$\begin{split} d\sigma^{DY} &\propto \bar{f}_1(x_1, k_{T1}^2) \otimes f_{1T}^{\perp}(x_2, k_{T2}^2) \sin(\phi - \phi_{S2}) + \\ &\uparrow \text{Sivers} \\ &+ \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1(x_2, k_{T2}^2) \sin(\phi + \phi_{S2}) + \\ &\uparrow \text{Boer-Mulders} \uparrow \text{Transversity} \\ &+ \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_{1T}^{\perp}(x_2, k_{T2}^2) \sin(3\phi - \phi_{S2}) \\ &\uparrow \text{Boer-Mulders} \uparrow \text{Pretzelosity} \end{split}$$

sum over q (qbar) flavour

The Drell-Yan process in π^{-} p

in the valence region, u quark-dominance

$$\sigma^{DY} \propto f_{\overline{u}|\pi^-} \otimes f_{u|p}$$
 where $f = h_1^{\perp}, f_1, f_{1T}^{\perp}, h_1, h_{1T}^{\perp}$

- \rightarrow extraction of the u-quark Sivers function
- \rightarrow model dependent extraction of transversity and Boer-Mulders functions

Testing non-perturbative QCD

confronting Drell-Yan and SIDIS results provides a crucial test of non-perturbative QCD \rightarrow check the predictions:

$$f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$$

$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

due to the T-odd character of the Sivers and Boer- Mulders functions

STRONG PHYSICS CASE

Why Drell-Yan at COMPASS ?

COMPASS is a multi-purpose spectrometer:

- availability of both muon and pion beams
- unique polarized target, well suitable for transversity studies
- a muon detection system
- spectrometer with wide angular acceptance

COMPASS plans

measurement of DY with high energy π^- beam and transversely polarised NH3 target soon

(Lol, CERN-SPSC-2009-003 SPSC-I-238, 21 January 2009,

Proposal in preparation)

not an easy experiment in the COMPASS environment

- many MC simulations
- test beam in 2007
- test beam in 2008
- test beam in 2009

 J/ψ and ψ ' region: the charmonium polarization is itself a subject of research

M > 4 GeV/c²: safe region to study Drell-Yan

beam tests

2007: 160 GeV/c π - beam, NH₃ target, no absorber to test the feasibility of the measurement

~ 90000 dimuon events in <12 hours of data taking

SPIN-Praha-2009

beam tests

2008: 160 GeV/c π - beam, at higher beam intensity

→ too high detector occupancy: absorber

2009: an prototype absorber will be placed after the (dummy) target to check detectors occupancy, extent of the combinatorial background, mass and vertex resolution, and radiation issues

COMPASS is a radiation supervised area

- the dose limits in the control room must stay $< 3 \mu Sv/h$
- all the region around target and absorber must be shielded

experimental apparatus

- ~ the existing one with the existing PT, plus
- an absorber just after the target
- an improved muon trigger in the LAS

in ~50% of the events, both the muons are detected in the LAS new hodoscopes already being built and to be used in the new SIDIS measurements

expected precision

 π ⁻ beam of 190 GeV/c

the acceptance

is higher in the valence quarks region, where SSA are expected to be larger

A. Martin

expected precision

 π ⁻ beam of 190 GeV/c

with

- the transversely polarized NH₃ target (120 cm long) and
- a beam intensity of 6 · 10⁷ particles/second,
- a luminosity of 1.7 · 10³³ cm⁻²s⁻¹ can be obtained

in two years of data taking one can collect more than 200000 DY events in the region 4 < Mμμ < 9 GeV/c²

the statistical error in the measured asymmetries is expected to be

$$\delta A^{\sin(\phi_{S2}-\phi)} \approx 1 - 2\%$$

expected precision

π ⁻ beam of 190 GeV/c

two years of data taking

predictions for the "Sivers asymmetry" (based on HERMES Sivers asymmetry in SIDIS) in the COMPASS phase-space $4 < M < 9 \ GeV/c^2$

- solid and dashed: Efremov et al, PLB612(2005)233;
- dot-dashed: Collins et al, PRD73(2006)014021;
- solid, dot-dashed: Anselmino et al, PRD79(2009)054010;
- boxes: Bianconi et al, PRD73(2006)114002;
- short-dashed: Bacchetta et al, PRD78(2008)074010.

further Drell-Yan measurements

what if COMPASS could dispose of a RF separated \overline{p}/K beam?

would be possible in the future

$$(\,\overline{p}\,,p\,)$$
 $ar{p}$: $(ar{u}ar{u}ar{d})$ p : (uud)
in this case $f_{ar{u}|ar{p}}=f_{u|p}$ thus $\sigma^{DY}\propto f_{u|p}f_{u|p}$.

$$(K^{\bar{}},p^{\uparrow})$$
 $_{K^{-}:\,(\bar{u}s)}$ $\sigma^{DY}\propto f_{\bar{u}|K^{-}}f_{u|p}$

- extraction of valence Sivers, transversity and Boer-Mulders functions
- access to unpolarized kaon distribution functions (poorly known)

Drell-Yan at COMPASS - conclusion

- DY is a well understood process it provides unique information of the hadron structure and dynamics, and of TMD PDFs, complementary to SIDIS
- COMPASS allows to probe the valence quark region, where the TMD effects are expected to be larger
- the πp part of the program can start soon:
 COMPASS can provide the first ever DY data on a polarized target and test the prediction on the sign of the Sivers function

Proposal in preparation

1st **phase**: $\pi^- p$ collisions using the polarized NH₃ target and possibly using a long liquid H₂ target **2**nd **phase**: $\overline{p} p$ collisions and $K^- p$ collisions if RF separated beam will be available Starting in 2010:

- SIDIS measurements with transversely pol protons (1 year)
- SIDIS measurements with longitudinally pol protons (1year)

Proposal in preparation

- DY on transversely polarised p target
- DVCS with LH target and polarised p target

Hadron program: not over further measurements mainly depending on the results from the 2008-2009 data taking