Future measurements at CERN with higher energy and higher intensity muon and hadron beams

> F.Kunne CEA Saclay On behalf of the COMPASS collaboration

Symmetries and Spin, Advanced Study Institute Prague, Czech Republic, July 26 - Aug. 2, 2009 In the context of the CERN Workshop May 11-13, 2009 http://indico.cern.ch/conferenceDisplay.py?confId=51128

Interest in future upgrades for higher energy and higher luminosity beams

Potential at CERN for further study of :

- Nucleon Spin (Transverse and Longitudinal)
- Spatial distribution of quarks and gluons
- Hadron spectroscopy
 - Projections for short term future
 - Interest in long term future upgrades

M2 Muon and Hadron beam line

SPS proton beam:1.4 10^{13} /spill, 400 GeV/cSecondary hadron beams(π , K, ...): 2.10⁸ /spill, 150-270 GeV/cTertiary muon beam(80% pol):2.10⁸ /spill, 100-200 GeV/c(numbers for 4.8 s spill)

COMPASS

M2 beam line, versatile setup with muon & hadron beams + various targets polarized or not

COMPASS short term plans with muons 2010/2011

(Completion of original muon part of proposal)

- transverse target polarisation:
 - proton target (NH_3), one year data taking
 - Collins & Sivers asymmetries and others
- longitudinal target polarisation:
 - proton target (NH_3), one year data taking
 - g_1^{P} , g_1^{ns} , $\Delta \overline{u} \Delta \overline{d}$

- Sizable guark transverse spin and "Collins analyzing power"
- Need full x, z and p_T separation while now summed over two other variables → Need higher luminosity

• Higher Q² than JLab or HERMES

Collins and Sivers, short term projections

Collins, Sivers and all other asymmetries

See talks of A. Martin and G. Pesaro

Longitudinal Spin - Inclusive

Improvements COMPASS/SMC : deuteron target

World data for proton & deuteron $g_1(x,Q^2)$

COMPASS : unique kinematic domain important for global QCD analyses

Can extend x and Q^2 range with higher energy beam

compass acceptance for higher energy μ beam

Longer term future

Longitudinal Spin - Inclusive

 $g_1^{NS} = (g_1^p - g_1^n)$ non-singlet spin structure function

 \rightarrow Test of the Bjorken sum rule (fundamental result of QCD) $\Gamma_1^{NS} = \Gamma_1^p - \Gamma_1^n = \frac{1}{6} \left| \frac{g_A}{g_V} \right|$

With higher energy beam, lower x data:

- \rightarrow Precise shape determination at low x
- \rightarrow More reliable extrapolation to x=0
- \rightarrow Reduced statistical and systematic errors in the Bjorken Sum

Longitudinal Spin - Sea quarks

Flavour asymmetry of the polarised light sea $\Delta \overline{u} - \Delta \overline{d}$

μ+ p

Longitudinal Spin - Strange quarks

First moment of Δs :

- ~zero from semi inclusive measurement
- negative $0.045 \pm 0.005 \pm 0.010$ from inclusive data

Need higher energy beam for low x coverage

See talk of E.Zemlyanishkina & B.Pawlukiewicz for Compass results on SIDIS (Δs) and ΔG

Competition in polarized lepton nucleon scattering

Projects for future electron ion colliders under discussion in other labs. However not available before ~ 10 years.

	ENC@Fair	eRHIC light	COMPASS PT	COMPASS LH2 GPD
L/10 ³² cm ⁻² s ⁻¹	1-4	1-10	5	1
\sqrt{s} / GeV	14	71	20	20
cost	100 M€	150M\$	exists	beam exists
			Table from C	Mallat at ETC/ENIC C

Table from G.Mallot at EIC/ENC GSI workshop 05/09

COMPASS FoM (w/o beam)

target	f _{dil}	Р	f ⁻² P ⁻²
р	0.18	0.8	0.02
d	0.4	0.5	0.04

eRHIC $p^{-2} \sim 0.4$, ENC similar

CERN is a potential major competitor in this physics domain meanwhile And further increase of energy in the future will be a must

Projection for Future EIC

7 GeV e x 150 GeV p, 100 days at 10³³,

From Rolf Ent, ECT Trento, Oct 2008

Modified COMPASS spectrometer

Medium term future (New Proposal being prepared)

- GPD (Generalized Parton Distributions) $\mu p \rightarrow \mu p \gamma$ measured by exclusive reactions DVCS (Deep Virtual ComptonScattering) and DVMP (Meson production), 'Beam charge and Spin asymmetry'
 - 2.5 m liquid hydrogen target, 1 year
 - transversely polarised target, 1 year
- Drell-Yan πp[↑]:
 - transversely polarised proton target, 2 years
 - Sivers/Boer-Mulders

See talk of A. Martin

Longer term future: Drell-Yan with pbar beam: pbar-p[†]

Generalised Parton Distributions

- Unified description of form factors and parton distribution functions
- Transverse imaging (nucleon tomography) and sensitivity to the quark angular momentum

Tomographic parton images of the nucleon

Generalized Parton Distribution functions

$d\sigma \alpha |T_{DVCS}|^2 + |T_{BH}|^2$ + interference term

The three terms dominate in different kinematic regions

Comparison BH and DVCS

E_u=160 GeV at Q²=2 GeV² |t|=0.1 GeV²

BH dominates

(reference) D

BH and DVCS comparable DVCS boosted by interference → Re T^{DVCS} or Im T^{DVCS}

study of do^{DVCS}/dt (not possible at JLab)

DVCS dominates

V*

Generalized Parton Distribution functions

Hadron spectroscopy See talks of S. Grabmuller, J. Bernhard,

<u>P.Jasinski, & T.Schlueter for present</u>

<u>Compass results</u>

Central Production of hadron resonances

Search for glue-rich states Reggeon-Pomeron and Pomeron-Pomeron scattering For future: Higher beam energy→ more Pomeron-Pomeron

Access higher energy resonance spectrum

Doubly charmed baryons

- Charm production cross sections rises fast with energy
- Can also be studied with hyperon beam
- High energy boosts the decay length (easier vertex separation) and increases yield of hyperons extracted

Highest energy desirable (450 GeV/c)

Main limitation: present transport line limited to 270 GeV/c (magnet power supplies)

Beam luminosity issues

Muon flux carefully optimized in the past years

Limiting factors :

- Number of protons/spill that can be
 - Accelerated in SPS : 4.3 10¹³
 - Extracted from SPS, (then to experiment):
 3.2 10¹³ for 9.6s flat top (2.5 10¹³)
 - 2 4.8s $(1.4 \ 10^{13})$
- Beam halo level in the experiment
- Radio protection issues at several places along the beam line
- Splitter magnet, transfer line (quadrupoles and other elements)
- Resistance of the T6 primary production target, dump

Some possible upgrades of the beam line

- Close the area (overcome halo limitation)
- Better beam line with short and long decay sections (600-1800m)
- Underground installations

p beam? for Drell-Yan processes

Secondary particle fluxes

Apply Atherton formula for 0 mrad (approximative only for $p \le 60 \text{ GeV/c}$). Obtain # particles per steradian per GeV/c and per 10^{12} interacting protons:

Preliminary rate estimates for RF separated antiproton beams

Possible solution with RF separated \overline{p} beam?

First and very preliminary thoughts, guided by

- recent studies for P326
- CKM studies by J.Doornbos/TRIUMF, e.g. http://trshare.triumf.ca/~trjd/rfbeam.ps.gz

At 100 GeV. With 2×10^{13} primary protons /10 s spill on the production target get ~ 3×10^8 total flux with purity about 50%,

From slide of L.Gatignon, 17-10-2006 Preliminary rate estimates for RF separated antiproton beams

Conclusion

CERN is presently a major actor in QCD physics with unique high energy polarized muon and hadron beams

Luminosity and energy upgrades will open a large window on uncovered territories.