Longitudinal and Transverse Spin Structure of the Nucleon from DIS

F.Kunne - CEA Saclay, France

Quark and Gluon Helicity Distributions

• Collins and Sivers Asymmetries HERMES & COMPASS results

GHP2009, Denver, USA, April 28-30 2009

Nucleon spin $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_Z$ Quark Gluon Orbital Momentum

Quark spin contribution $\Delta\Sigma$: Theory: QCD, Ellis-Jaffe with $\Delta s=0$: $\Delta\Sigma=0.6$ Experiment: g_1 spin structure function, SU(3): Spin crisis with EMC measurement of $a_0 \approx \Delta\Sigma$ compatible with 0 Now: $a_0=0.3$

Quark model, QCD \overline{MS} scheme, $a_0 = \Delta \Sigma$ QCD AB scheme $a_0 = \Delta \Sigma - n_f (\alpha s/2\pi) \Delta G$

- For $a_0 \sim 0.3$, need $\Delta G \sim 2.5$ (L_z~-2.3) to restore $\Delta \Sigma \sim 0.6$
- ΔG enters also in the spin $\frac{1}{2}$ sum rule

Quark spin contribution $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

 μ N Deep Inelastic Scattering DIS $F_1(x) \rightarrow 1/2 \sum_{u,d,s} e^2 q(x)$

Q² > 1 (GeV/c)²

 x_{Bj} parton momentum fraction

 μ N Polarized DIS

μ / e

Virtual γ couples to opposite helicity quark \rightarrow measure one helicity distribution q(x)

By reversing nucleon polarization \rightarrow measure other helicity distribution $\overline{q}(x)$

 $\Delta q = \overleftarrow{q} - \overrightarrow{q}$ $g_1(x) \rightarrow 1/2 \sum_{u,d,s} e_q^2 \Delta q(x)$

Spin asymmetry
$$A = \frac{\vec{N} - \vec{N}}{\vec{N} + \vec{N}} = \frac{g_1}{F_1}$$
 $\longrightarrow \qquad \sum_{q,q,s} e_q^2 \Delta q(x)$

g_1 and quark spin contribution $\Delta\Sigma$

• measure
$$\int_{0}^{1} g_{1}^{p} dx \longrightarrow 4\Delta u + \Delta d + \Delta s$$

neutron decay constant

$$a_3 = \Delta u - \Delta d = g_A = 1.257$$

• hyperon β decay +SU(3) $a_8 = \Delta u + \Delta d - 2\Delta s = 0.585 \pm 0.025$

$$\Rightarrow \Delta \Sigma = \Delta u + \Delta d + \Delta s$$

HERA ring e+ and e- 27.6 GeV longitudinaly polarized ~ 54%

Gaseous internal target Longit. Polar. 85% H, D, He Transv. Polar H Unpol H, D, Ne, Kr

HERMES at DESY

Data taking: from 1995 to 2007

$\Delta\Sigma$ from Spin structure function g_1

COMPASS

 $\Delta \Sigma = 0.30 \pm 0.01 \text{ (stat)} \pm 0.02 \text{ (evol)}$ COMPASS fit to $g_1^{\text{p,n,d}}$ world data, $\overline{\text{MS}}$ scheme, $Q^2=3 (GeV/c)^2$ PLB 647 (2007) 8

 $\Delta s + \Delta \overline{s} = -0.08 \pm 0.01$ (stat) ± 0.02 (evol) COMPASS data only

HERMES

 $\Delta \Sigma = 0.33 \pm 0.011 \text{ (stat)} \pm 0.025 \text{ (theo)} \pm 0.028 \text{ (evol)}$ HERMES from g_1^{d} data, MS scheme, Q²=5 (GeV/c)², neglecting × < 0.02contrib., PRD75 (2007)012007

 $\Delta s + \Delta s = -0.085 \pm 0.013$ (th) ± 0.008 (exp) ± 0.009 (evol)

Flavor dependent quark helicity distributions

Semi-inclusive DIS measurements

• Outgoing hadron tags quark flavour • Need to know fragmentation functions of quark q into hadron h: $D_q^h(z)$

z=E_h/(Eμ-Eμ')

$$A_1^{h(p/d)} = \frac{\sum_q e_q^2 D_q^h \Delta q}{\sum_q e_q^2 D_q^h q}$$

With deuteron data alone, can extract at LO: $\Delta u_v + \Delta d_v$, $\Delta \overline{u} + \Delta \overline{d}$, $\Delta s = \Delta \overline{s}$ COMPASS

With deuteron + proton data, can extract at LO: Δu_v , Δd_v , $\Delta \overline{u}$, $\Delta \overline{d}$ and $\Delta s = \Delta \overline{s}$ separately HERMES

Inclusive & Semi-inclusive Spin Asymmetries

Proton SMC, HERMES

(2007 COMPASS proton data still to come...)

Deuteron HERMES, COMPASS

HERMES - Helicity quark distributions

No assumption on sea polarization

 $\Delta u(x)$ and $\Delta d(x)$ good agreement with LO-QCD fit to inclusive data

Sea quark polarizations $\Delta u(x)$, $\Delta d(x)$ and $\Delta s(x)$ ~ zero in measured region 0.02 < x < 0.3

compass - Helicity quark distributions

from deuteron alone

 $\Delta u_v + \Delta d_v$ in agreement with results from $A^{h^+-h^-}$

 $\overline{\Delta u} + \overline{\Delta d} \sim 0$ asymmetric sea

 Δs value and error 2-3x larger with EMC than DSS frag. fct.

Strong dependence on $s \rightarrow K$ frag. function

 \rightarrow First moment $\Delta s = \Delta \overline{s} = -0.1 \pm 0.1 \pm 0.1$ in 0.004<x<0.3

Need more statistics. Fragmentation functions? Low x contribution?

(to be compared to Δs = - 0.045 ± 0.005± 0.010 from inclusive data Γ_1^N , 0< x <1 using F and D).

Isoscalar extraction of s(x) and \Delta s(x) HERMES & COMPASS

•Use kaon multiplicities (K⁺ + K⁻) from deuteron data only $K^+ = u\overline{s}$ $K^- = \overline{u}s$ high sensitivity to s(x)

•From spin asymmetries A_1^d and A_1^d (K+ + K-) extract $\Delta Q = \Delta u + \Delta \overline{u} + \Delta d + \Delta \overline{d}$ and $\Delta S = \Delta s + \Delta \overline{s}$

Assume : isospin symmetry p & n charge conjugation invariance in fragmentation $D_q^{K^++K^-}(z) = D_{\overline{q}}^{K^++K^-}(z)$

Isoscalar extraction of s(x) and $\Delta s(x)$

HERMES

0.6

Longitudinal spin transfer to Λ & $\bar{\Lambda}$

- Spin transfer for anti- Λ is large and positive
- Alternate way to access s distribution and Δs if polarized target

$\Delta g/g$ Measurement- Photon Gluon fusion PGF

 $\gamma g \rightarrow q q$

• q=c open charm $c \rightarrow D^0 \rightarrow K \pi$ Clean signature of PGF pQCD scale μ^2 = 4 ($m_c^2 + p_T^2$) Combinatorial background & limited statistics

COMPASS

Open charm events from COMPASS for $\Delta g/g$

• $\Delta g/g$ at LO prefers negative value, but 2σ away from 0

• NLO? <u>Model independent</u> spin asymmetries $A(\gamma^*N \rightarrow DX)$ in (p_T, E_D) bins chosen such that $a_{LL} \sim \text{constant}$, will be used for comparison to NLO QCD fits and for extraction of $\Delta g/g$ at NLO. In progress

$\Delta g/g$ Measurement- Photon Gluon fusion PGF

• q=c open charm $c \rightarrow D^{0} \rightarrow K \pi$ Clean signature of PGF pQCD scale μ^{2} = 4 (m_{c}^{2} + p_{T}^{2}) Combinatorial background & limited statistics COMPASS

 $\gamma g \rightarrow q q$

• q=u,d,s high p_T hadron pair $q q \rightarrow h h$ High statistics pQCD scale Q^2 or Σp_T^2 Physical background, better described for high Q^2

HERMES & COMPASS

$\Delta g/g$ from high p_T hadron pairs

R and a_{LL} from <u>effective model</u> in Monte-Carlo for all processes

- HERMES : measurement at all Q^2
- COMPASS : values for Q²>1 and Q²<1

 $\rightarrow \Delta g/g$ values at <QCD scale> ~3 GeV², x_q ~0.1; All compatible with zero

$\Delta g/g$ direct measurements

 $\Delta g/g$ small for 0.04< x < 0.2

Direct measurements exclude ΔG as large as GRSV max.

See RHIC pp Asymmetries in Spin Session

Consequence for nucleon spin

 $\Delta G = \int \Delta g(x) dx$ not large, both from direct measurements (essentially high p_T + RHIC) and present g_1 QCD fit: $|\Delta G| < 0.35$

$$\Delta \Sigma = \mathbf{a}_0 + (3 \alpha_s / 2\pi) \Delta \mathbf{G}$$

within \pm 0.06 for $\ \Delta G$ within \pm 0.35 at Q2=3

 $\rightarrow \Delta \Sigma \sim 0.30$ small (\neq predictions)

possible scenarios:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\begin{cases} \frac{1}{2}0.3 + 0.35 + 0.0 \\ \frac{1}{2}0.3 + 0.0 + 0.35 \\ \frac{1}{2}0.3 - 0.35 + 0.7 \end{cases}$$

Transversity

- Transversely polarized target
- Measure simultaneously two azimuthal asymmetries

Collins: Outgoing hadron direction & <u>quark transverse spin</u> Sivers: nucleon spin & quark transverse momentum

Sivers

note: $\Delta_T q$ also measured using hadron pair Interference FF, or lambda Transverse. Polarization

Transversity : Collins Asymmetry on deuteron COMPASS

• All asymmetries compatible with zero : hint for $\Delta u_T + \Delta d_T$ cancellation

Acces to d quark in global fits

Transversity : Collins Asymmetry on proton

HERMES pions

Transversity : Collins Asymmetry on proton HERMES K/π comparison

•
$$K^+$$
 & π + : similar (u dominance)

•
$$K^- \& \pi^-$$
 opposite
($K^-= \overline{u}s$ sea quark dominance)

Transversity : Collins Asymmetry on proton COMPASS 2007 (part)

Combined analysis of deuteron, proton and frag. fct data lead to extraction of Δu_T and Δd_T

Extraction of Δu_T and Δd_T

Several combined analyses of COMPASS deuteron, HERMES proton and BELLE fragm.fct. data, by Anselmino et al., Efremov at al., Vogelsang et al. ...

Results from M. Anselmino et al. arXiv:0812.4366:

Sivers Asymmetries on deuteron

COMPASS

Small SIVERS on deuteron: hint for small L_g? Brodsky-Gardner 2006

Sivers Asymmetry on proton

Sivers Asymmetry on proton

HERMES K/ π comparison

• K⁺ twice bigger than π^+ Sivers function for the sea quarks \overline{s} and \overline{d} ?

•
$$K^-$$
 and $\pi^- \sim 0$
us ud

Sivers Asymmetry HERMES & COMPASS

Extraction of Sivers functions

Several combined analyses of COMPASS deuteron, HERMES proton and BELLE ff (Anselmino et al., Efremov at al., Vogelsang et al. ...)

Sivers Asymmetry
$$(\pi^+ - \pi^-)$$

Summary & Outlook

- Gluon polarization Extracted at LO from charm and high $p_{\rm T}$ events Need NLO studies

- Quark helicity : extraction at LO of Δu_v , Δd_v , $\overline{\Delta u}$, $\overline{\Delta d}$ and Δs
- Transversity distributions $\rightarrow \Delta_T u > 0$ and $\Delta_T d < 0$

• Sivers Distr. Functions : Signal in HERMES proton data, not in COMPASS. More statistics needed

Many other results not shown here

And exciting future program in preparation !

COMPASS future: proposal to measure GPDs, TMDs from SIDIS and Drell-Yan + More on transversity and Longitudinal spin structure