

Medium and Long Term Plans: LoI submitted to CERN/SPSC in January 2009 Proposal in preparation

2010–11: Transv. and Long. Nucleon Spin Structure (R. Joosten, E. Kabuss) with polarised μ and NH₃ (proton) target

2012: Hadron Spectroscopy and Primakoff with π , K beam (S. Paul) **Transv. Spatial Distrib. GPDs** with DVCS and DVMP with μ beams **Transv. Mom. Distrib.** with Drell-Yan with π and in far future \overline{p} , K

Nicole d'Hose, October 2, 2009, EINN09 Milos

1.4 1013/spill of 4.8s, 400 GeV/c SPS proton beam: 2.10⁸ /spill, 150-270 GeV/c Secondary hadron beams (π 108 / soil 100-200 GeV/c Tertiary muon beam (80% pc) -> Luminosity ~ 5×10^{32} cm⁻² s with polarised targets 60m COMPAS

can Sasso

high energy beam(s), broad kinematic range, large angular acceptance

Primakoff experiments with π , K or inverse Compton Scattering on π , K

 $\pi \gamma \rightarrow \pi \gamma$ or $\mathbf{K} \gamma \rightarrow \mathbf{K} \gamma$: pion (or kaon) polarizabilities (crucial comparison with (point-like) muon beam) $\pi \gamma \rightarrow \pi \pi^0$: chiral anomaly ($F_{\gamma 3\pi}$) Test of QCD at low energy in π rest frame

Longitudinal Spin Structure Function of the Deuteron

Inclusive measurements on a longitudinally polarised deuteron target in 2002-3-4-6

Longitudinal Spin Structure Function of the Proton

Necessity of a balanced statistics between proton and deuteron data

Inclusive measurements on a longitudinally polarised deuteron target in 2002-3-4-6

Inclusive measurements on a longitudinally polarised proton target in 2007

+ **150 days** (1 year) of SPS beam

at 200 GeV

At small x →precise shape determination →better extrapolation

COMPASS Projection with 1 additional year of proton

Transversity distribution

chiral-odd distribution accessed in SIDIS

a quark moving horizontally and polarized upward prefers to emit the leading meson to the left side of the jet

 \rightarrow left-right asymmetry in the hadronisation of transversely polarised quarks

Collins asymmetry $\propto \Delta_T q(x) \times Collins$ Fragmentation Function in SIDIS

Transverse Momentum Distributions

with transv. momentum $k_T of partons \rightarrow 8 \text{ TMD PDFs}(x, k_T^2)$ The most famous: Sivers function $\Delta_0^T q(x, k_T^2)$ or f_{1T}^\perp correlates $k_T k_T$ the transv. spin of the nucleon to the transv. momentum of the q. (distorsion)

Sivers asymmetry $\propto \Delta_0^T q(x, k_T^2) \times Fragmentation Function in SIDIS (requires final state interaction, parton orbital angular momentum)$

GPDs program @ COMPASS

Generalised Parton Distribution functions (H,Ĥ,E,Ê)

- Allow for a unified description of form factors and parton distributions
- Allow for transverse imaging (nucleon tomography) and give access to the quark angular momentum (through E)

What makes COMPASS a unique case?

1- CERN SPS high energy muon beam 100/190 GeV Kinematic domain 10⁻² < x < 10⁻¹ 2- μ+ and μ- γ

2- $\mu\text{+}$ and $\mu\text{-}$ with opposite polarisation $\pm80\%$

3- with a 2.5m long LH2 target
Lumi= 10³² cm⁻² s⁻¹
(present technology limit for a collider*)
→ Q² up to 8 GeV²

Any lumi upgrade extents the reach of the proposed measurements

if Lumi × 4 → more comfortable statistics for Q² up to 12 GeV²

*: ENC@FAIR E_p =15GeV E_e =3GeV equivalent to E_{μ} @ CERN=100GeV

2 channels studied:

- exclusive meson production ($\rho,\omega,\Phi,J/\psi,...,\pi,...$)
- exclusive single-photon production

$d\sigma \alpha |T^{DVCS}|^2 + |T^{BH}|^2 + Interference Term$

at COMPASS with 160 GeV we can deal with ✓ either BH (excellent relative yield) ✓ either DVCS ✓ or the interference

Deeply Virtual Compton Scattering

Phase 1: DVCS experiment to constrain GPD H

Phase 2: DVCS experiment to constrain GPD E

with μ^+ and transversely polarized $\,$ NH3 (proton) target

$$d\sigma(\phi, \phi_{S}) - d\sigma(\phi, \phi_{S} + \pi)$$

$$\propto Im(F_{2}\mathcal{H} - F_{1}\mathcal{E}) \sin(\phi - \phi_{S}) \cos \phi$$

Transverse imaging at COMPASS

Using $S_{U,CS}$ and integration over $\phi \rightarrow d\sigma_{DVCS}/dt \sim exp(-B|t|)$ and BH subtraction

for valence quark **α** ~ 1 GeV⁻² to reproduce FF for gluon **α** ~ 0.164 GeV⁻² (J/Ψ at Q²=0) **α** ~ 0.02 GeV⁻² (J/Ψ at Q²=2-80 GeV²)

« at ~ 0.25 GeV⁻²
 for soft Pomeron

Experimental requirements for DVCS $\mu p \rightarrow \mu' p \gamma$

2008-2009: a small 1m Recoil Proton Detector and a 40cm LH2 target during the hadron program

- clear signature of BH events (about 100 events)

- DVCS events are expected with a flat distribution

Looks encouraging, **2 weeks measurements now in 2009** to get about 1000 BH and 100 (DVCS+ Int)

Drell-Yan to study TMD

Phase 1: Drell -Yan π[−]p[↑] → μ⁺μ[−]X with intense pion beam with the transversely polarised NH₃target

Cross sections: In SIDIS: convolution of a DPF with a fragmentation function In DY: convolution of the PDFs from the 2 hadrons → complementary information

The Drell-Yan process in π^- p

Unpolarised

 $d\sigma^{DY} \propto \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1^{\perp}(x_2, k_{T2}^2) \cos 2\phi$ $\uparrow \text{ Boer-Mulders} \uparrow$

Target transversely polarised

$$\begin{split} d\sigma^{DY} \propto \bar{f}_1(x_1, k_{T1}^2) \otimes f_{1T}^{\perp}(x_2, k_{T2}^2) \sin(\phi - \phi_{S2}) + \\ \uparrow \text{ Sivers} \\ + \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1(x_2, k_{T2}^2) \sin(\phi + \phi_{S2}) + \\ \uparrow \text{ Boer-Mulders} \quad \uparrow \text{ Transversity} \end{split}$$

+ $\bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_{1T}^{\perp}(x_2, k_{T2}^2) \sin(3\phi - \phi_{S2})$ \uparrow Boer-Mulders \uparrow Pretzelosity

Collins-Soper frame θ, φ lepton plane wrt hadron plane φ_{S2} target transverse spin vector S_{2T} wrt lepton plane

The Drell-Yan process in π^- p

Unpolarised

 $\begin{aligned} d\sigma^{DY} \propto \bar{h}_{1}^{\perp}(x_{1}, k_{T1}^{2}) \otimes h_{1}^{\perp}(x_{2}, k_{T2}^{2}) \cos 2\phi \\ \uparrow \text{ Boer-Mulders} \uparrow \end{aligned}$

Target transversely polarised

$$\begin{split} d\sigma^{DY} \propto \bar{f}_1(x_1, k_{T1}^2) \otimes f_{1T}^{\perp}(x_2, k_{T2}^2) \sin(\phi - \phi_{S2}) + \\ \uparrow \text{ Sivers} \\ + \bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_1(x_2, k_{T2}^2) \sin(\phi + \phi_{S2}) + \\ \uparrow \text{ Boer-Mulders} \quad \uparrow \text{ Transversity} \end{split}$$

+ $\bar{h}_1^{\perp}(x_1, k_{T1}^2) \otimes h_{1T}^{\perp}(x_2, k_{T2}^2) \sin(3\phi - \phi_{S2})$ \uparrow Boer-Mulders \uparrow Pretzelosity

The **Boer-Mulders** function

• - (**(**)

correlates the quark transverse spin and the quark k_{τ} (unpol N)

Important tests of non-perturbative QCD

Confronting Drell-Yan and SIDIS results

The T-odd character of the Boer-Mulders and Sivers function implies that these functions are process dependent

Boer-Mulders
$$h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$$

Sivers $f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$

Why Drell-Yan at COMPASS?

 σ^{DY} dominated by the Annihilation of a valence anti-quark from the pion and a valence quark from the polarised proton

 1^{rst} moment of Sivers function for u quark (at Q²=25 GeV²) large acceptance of COMPASS in the valence quark region for π and p where SSA are expected to be larger

 X_{π}

Results from test measurements in 2007

Prediction for Drell-Yan at COMPASS

To access Sivers function, we propose to measure in the safe dimuon mass region 4 < $M_{\mu+\mu-}$ < 9 GeV :

Theoretical predictions from Anselmino, Bachetta, Bianconi, Collins, Efremov

Experimental Requirements

Phase 1: - Hadron absorber downstream of polarised target

- New trigger system for μ + μ - pairs

Phase 2: For the Longer Term: RF separated p / K⁻ beam of 5.10⁷ p/spill for 10¹³ ppp with 50% purity

 $(\overline{p}, p\uparrow)$ $\overline{p}: (\overline{u}\overline{u}\overline{d})$ p: (uud) $f_{\overline{u}}|_{\overline{p}} = f_{u}|_{p}$ $\sigma^{DY} \propto f_{u|p}f_{u|p}$ $(\overline{K}, p\uparrow)$ $K^{-}: (\overline{u}s)$ $\sigma^{DY} \propto f_{\overline{u}}|_{K^{-}}f_{u|p}$

Conclusions

COMPASS is preparing to tackle new central issues:

- Transverse Momentum Distributions with DY
- Transverse Spatial Distributions GPD with DVCS and DVMP

For the next 10 years, CERN is a major actor in QCD physics with the unique high energy polarized muon and hadron beams

In future, luminosity and energy upgrades will open a large window on uncovered territories

- Intense H⁻ source and linac4 (2008-2014),
- PS replaced by PS2 50 GeV (2012-2018),
- SPS upgrade

 \rightarrow higher energy, higher intensity, higher duty cycle