Measurements of Transverse Momentum and Transverse Spin Effects at COMPASS

Anna Martin

Trieste University and INFN

on behalf of the COMPASS Collaboration

GPD2008 Workshop

ECT*, June 12, 2008

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

NEW!

conclusions

fixed target experiment at the CERN SPS broad physics programme

data taking since 2002:

muon beam	deuteron (⁶ LiD) polarised target	2002 2003 2004	L/T target polarisation 4:1
		2006	L target polarisation only
	proton (NH ₃) polarised target	2007	L /T target polarisation 1:1
hadron beam	LH target	2008	

muon beam: 160 GeV/c

longitudinal polarisation -80% intensity 2.10⁸ μ⁺/spill (4.8s/16.2s)

ECT*, June 12, 2008

Anna Martin

- high energy beam
- large angular acceptance
- broad kinematical range

two stages spectrometer Large Angle Spectrometer (SM1) Small Angle Spectrometer (SM2)

OMPA

the target system

solid state target operated in frozen spin mode

2002-2004: ⁶LiD (polarised deuteron) dilution factor f = 0.38polarization $P_T = 50\%$

two 60 cm long cells with opposite polarisation (systematics)

2006:

- PTM replaced with the large acceptance COMPASS magnet (180 mrad)
- 2 target cells → 3 target cells

2007: NH₃ (polarised protons) dilution factor f = 0.14 polarization P_T = 90%

during data taking with transverse polarisation, polarisation reversal in the cells after ~ 4-5 days

SIDIS event selection and kinematics

• z>0.2 (all), z>0.25 (leading)

OMPA

SIDIS event selection and kinematics

OMPA

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

conclusions

Anna Martin

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2}\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h}\right\}$$

$$+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h}$$

3 independent azimuthal modulations in ϕ_h , the hadron azimuthal angle in GNS

pQCD contributions expected to be important at p_t > 1 GeV/c

O(α_c¹): H. Georgi and H. D. Politzer. PRL 40 (1978) 3-6 A. Mendez. NP B145 (1978) 199-220.

 $O\left(\alpha_{c}^{2}\right)$: A. Daleo, D. de Florian, and R. Sassot. PR D71 (2005) 034013.

ECT*, June 12, 2008

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2}\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right. \\ &+\varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h}+\lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \end{aligned}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot k_T}{M_h} \left(xe H_1^\perp + \frac{M_h}{M} f_1 \frac{\tilde{G}^\perp}{z} \right) + \frac{\hat{h} \cdot p_T}{M} \left(xg^\perp D_1 + \frac{M_h}{M} h_1^\perp \frac{\tilde{E}}{z} \right) \right]$$

"Amsterdam" notation

ECT*, June 12, 2008

Anna Martin

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2}\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h}\right\}$$
$$+\varepsilon\cos(2\phi_h)F_{UU}^{\cos2\phi_h}+\lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h}$$

$$F_{UU}^{\cos\phi_{h}} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot k_{T}}{M_{h}} \left(xh H_{1}^{\perp} + \frac{M_{h}}{M} f_{1} \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{h} \cdot p_{T}}{M} \left(xf^{\perp} D_{1} + \frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{H}}{z} \right) \right]$$
Cahn effect
+ Boer-Mulders DF
$$xh = x\tilde{h} + \frac{p_{T}^{2}}{M^{2}}h_{1}^{\perp} \qquad F_{UU}^{\cos\phi_{h}} \approx \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot p_{T}}{M} f_{1} D_{1} \right]$$
F_{UU}^{\cos\phi_{h}} = \mathcal{C} \left[-\frac{2\left(\hat{h} \cdot k_{T}\right)\left(\hat{h} \cdot p_{T}\right) - k_{T} \cdot p_{T}}{MM_{h}} h_{1}^{\perp} H_{1}^{\perp} \right]
Boer-Mulders DF x Collins FF + Cahn effect

 MM_h

+ Cahn effect

ECT*, June 12, 2008

Anna Martin

Cahn effect

kinematical effect due to quark intrinsic momentum

$$\frac{d\sigma}{d\phi_h} \propto 1 - 4 \frac{\langle k_t^2 \rangle z P_t}{Q \langle P_t^2 \rangle} D_{\cos\phi_h}(y) \cos\phi_h + \dots$$

Boer-Mulders DF leading order DF

4

quark with spin parallel to the nucleon spin in an unpolarised nucleon

$$\begin{split} F_{UU}^{\cos\phi_{h}} &= \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{h} \cdot k_{T}}{M_{h}} \left(xh \, H_{1}^{\perp} + \frac{M_{h}}{M} \, f_{1} \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{h} \cdot p_{T}}{M} \left(xf^{\perp} D_{1} + \frac{M_{h}}{M} \, h_{1}^{\perp} \frac{\tilde{H}}{z} \right) \right] \\ \\ \begin{array}{l} \textbf{Cahn effect} \\ + \text{ Boer-Mulders DF} \end{split} \qquad xh = x\tilde{h} + \frac{p_{T}^{2}}{M^{2}} h_{1}^{\perp} \qquad F_{UU}^{\cos\phi_{h}} \approx \frac{2M}{Q} \, \mathcal{C} \left[-\frac{\hat{h} \cdot p_{T}}{M} \, f_{1} D_{1} \right] \\ \\ \hline F_{UU}^{\cos 2\phi_{h}} &= \mathcal{C} \left[-\frac{2\left(\hat{h} \cdot k_{T}\right)\left(\hat{h} \cdot p_{T}\right) - k_{T} \cdot p_{T}}{MM_{h}} h_{1}^{\perp} H_{1}^{\perp} \right] \\ \end{array} \right] \begin{array}{l} \textbf{Boer-Mulders DF x Collins Ff} \\ + \text{ Cahn effect} \\ + \text{ Cahn effect} \end{array}$$

ECT*, June 12, 2008

data sample:

part of the 2004 data collected with L and T target polarisation

with both target orientation configurations to cancel possible polarisation effects

event selection:

- Q²>1 (GeV/c)²
- 0.1<y<0.9
- W>5 GeV/c²
- 0.2 < z < 0.85
- 0.1 < p_T < 1.5 GeV/c

final statistics:

ECT*, June 12, 2008

to extract the asymmetries

the azimuthal distributions have to be corrected by the apparatus acceptance → dedicated MC simulations for L and T target polarisation data

OMPA

final azimuthal distribution

Anna Martin

the final azimuthal distributions are fitted with the function:

$$\boldsymbol{N}_{\mathrm{corr}}(\phi_h) = \boldsymbol{N}_0(\mathbf{1} + \boldsymbol{A}_{\sin\phi_h} \sin\phi_h + \boldsymbol{A}_{\cos\phi_h} \cos\phi_h + \boldsymbol{A}_{\cos2\phi_h} \cos 2\phi_h)$$

final azimuthal distribution

OMPA

systematic errors evaluated from:

- compatibility of results with L and T target polarization (different experimental conditions, different MCs)
- comparison of results obtained using two MCs with different settings for each data set

(LEPTO default, standard COMPASS high p_t; ~extreme cases)

most important contribution

- compatibility of results from subsamples corresponding to
 - different periods
 - different target polarisations
 - different geometrical regions for the scattered muon

results: $\sin \phi$ modulation

$$\epsilon_{s} = \frac{2y\sqrt{1-y}}{1+(1-y)^{2}}$$

error bars: statistical errors

bands: systematical errors

¢OMPAX

results: cos ø modulation

 $A_{\cos\phi}/\epsilon_{c}$

OMP

 $\varepsilon_{c} = \frac{2(2-y)\sqrt{1-y}}{1+(1-y)^{2}}$

results: cos ø modulation

comparison with theory

M. Anselmino, M. Boglione, A. Prokudin, C. Türk Eur. Phys. J. A 31, 373-381 (2007) does not include Boer – Mulders contribution

ECT*, June 12, 2008

results: $\cos 2\phi$ modulation

ECT*, June 12, 2008

COMPA

results: $\cos 2\phi$ modulation

comparison with theory

V.Barone, A.Prokudin, B.Q.Ma arXiv:0804.3024 [hep-ph]

ECT*, June 12, 2008

summary

positive hadrons negative hadrons

error bars: statistical errors only

Anna Martin

OMPA

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

conclusions

Transversity Distribution Function

is chiral-odd:

observable effects are given only by the product of $\Delta_T q$ (x) and an other chiral-odd function

can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

 $\begin{array}{ll} I \ N^{\uparrow} \rightarrow I' \ h \ X & \text{``Collins'' asymmetry} \\ \text{``Collins'' Fragmentation Function} \\ I \ N^{\uparrow} \rightarrow I' \ h \ h \ X & \text{``two-hadron'' asymmetry} \\ \text{``Interference'' Fragmentation Function} \\ I \ N^{\uparrow} \rightarrow I' \ \Lambda \ X & \Lambda \ polarisation \\ Fragmentation Function \ of \ q_{\uparrow} \rightarrow \Lambda \end{array}$

all explored in COMPASS

I will concentrate on the first

Collins asymmetry

Collins effect

 \rightarrow azimuthal distribution of the hadrons produced in $| N^{\uparrow} \rightarrow |' h^{\pm} X$

$$\mathbf{N}_{\mathbf{h}}^{\pm}(\Phi_{\mathbf{C}}) = \mathbf{N}_{\mathbf{h}}^{\mathbf{0}} \cdot \left[\mathbf{1} \pm \mathbf{P}_{\mathbf{T}} \cdot \mathbf{D}_{\mathbf{NN}} \cdot \mathbf{A}_{\mathbf{Coll}} \cdot \mathbf{sin} \Phi_{\mathbf{C}} \right]$$

refer to the opposite orientation of the transverse spin of the nucleon

 P_T is the target polarisation; D_{NN} is the transverse spin transfer coefficient initial \rightarrow struck quark

"Collins angle"

$$\Phi_{\mathbf{C}} = \phi_h - \phi_{s'} = \phi_h + \phi_s - \pi$$

 $\phi_{h,s',S}$ azimuthal angles of hadron momentum, of the spin of the fragmenting quark and of the nucleon in the GNS

from the azimuthal distribution of the hadrons one measures the "Collins Asymmetry"

Collins asymmetry

using different targets (p, d, n) and identifying the final hadron one can perform flavour separation

unique feature of SIDIS

has been measured by the HERMES experiment on p different from zero for charged particles of opposite signe for positive and negative charge particles

from the azimuthal distribution of the hadrons one measures the "Collins Asymmetry"

$$\boldsymbol{A}_{\text{Coll}} \propto \frac{\displaystyle \sum_{q} \boldsymbol{e}_{q}^{2} \cdot \boldsymbol{\Delta}_{T} \boldsymbol{q} \cdot \boldsymbol{\Delta}_{T}^{0} \boldsymbol{D}_{q}^{h}}{\displaystyle \sum_{q} \boldsymbol{e}_{q}^{2} \cdot \boldsymbol{q} \cdot \boldsymbol{D}_{q}^{h}}$$

Collins asymmetry – deuteron data

charged hadrons (mostly pions)

- 2004: first results from 2002 data [PRL94 (2005) 202002] confirmed in
- 2006: final results from 2002-2004 data [NPB765 (2007)31]

COMPASS 2002-2004

OMPA

asymmetries compatible with zero within the statistical errors (syst. errors much smaller) the same with leading h

with HERMES results, cancellation between u and d quark contributions

Collins asymmetry – deuteron data

identified hadrons

• 2007: final results from 2002-2004 data

[arXiv:0802.2160]

ECT*, June 12, 2008

again, difficult to see a signal ...

Anna Martin

COMPA

Collins asymmetry – fits to data

new results using last HERMES and COMPASS [arXiv:0802.2160] pion data, and BELLE data

Collins asymmetry – fits to data

new results using last HERMES and COMPASS [arXiv:0802.2160] pion data, and BELLE data

200

> < 3 > < 3 >

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

conclusions

Sivers asymmetry

appears in SIDIS as a modulation in the "Sivers angle" $\Phi_{\rm S} = \phi_h - \phi_S$

 $N_{h}^{\pm}(\Phi_{s}) = N_{h}^{0} \cdot [1 \pm P_{T} \cdot A_{siv} \cdot sin\Phi_{s}]$

 ϕ_{k} azimuthal angle of hadron momentum ϕ_s azimuthal angle of the spin of the nucleon

the "Sivers angle" $\Phi_{\rm S}$ and the "Collins angle" $\Phi_{\rm C}$ are independent

→ the Collins and Sivers asymmetries can be disentangled and extracted from the same data in SIDIS on a transversely polarised target

the "Sivers DF"

the Sivers asymmetry has been measured by the HERMES experiment on p different from zero for positive charge particles compatible with zero for negative charge particles

Sivers asymmetry – deuteron data

charged hadrons (mostly pions)

- 2004: first results from 2002 data [PRL94 (2005) 202002] confirmed by
- 2006: final results from 2002-2004 data [NPB765 (2007)31]

asymmetries compatible with zero within the statistical errors

(systematic errors much smaller)

cancellation between u and d quark contributions in the dueteron

ECT*, June 12, 2008

Anna Martin

Sivers asymmetry – deuteron data

identified hadrons

• 2007: final results from 2002-2004 data [arXiv:0802.2160]

Anna Martin

COMPA

Sivers asymmetries - fits to data

new results using HERMES and COMPASS pion and kaon data

M. Boglione In collaboration with M. Anselmino, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Turk

ECT*, June 12, 2008

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

conclusions

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \begin{array}{l} \begin{array}{l} \textbf{Semi-inclusive cross-section} \\ \textbf{18 structure functions} \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \\ + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \\ + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\ + \left| S_{\perp} \right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ + \left| S_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos\phi_S} \\ + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}, \end{aligned}$$

semi-inclusive cross-section 8 tgt transverse spin dependent asymmetries, 4 LO

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \int_{1T}^{\perp q} \otimes D_{1q}^h \\
Sivers$$

$$= \int_{1T} \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \frac{h_1^q \otimes H_{1q}^{\perp h}}{Collins} \\
+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\
+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\
= \left[\left(S_{\perp} \right) \lambda_0 \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \\
+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\},$$

all measured by COMPASS on deuteron

target transverse spin dependent

asymmetries (LO)

$$F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

g_{1T} is the only parton DF which is chiral-even, T-even, leading twist in addition to the unpolarised DF and to the helicity DF

all these asymmetries are compatible with zero the same result for charged pions and kaons

Anna Martin

conclusions from COMPASS deuteron data

- the unpolarised azimuthal asymmetries are different from zero and different for positive and negative hadrons
- all the transverse spin asymmetries have been measured to be compatible with zero

HERMES, COMPASS, BELLE data:

consistent picture

first fits, extractions of the new DFs,

and predictions for other experiments

conclusions from COMPASS deuteron data

- the unpolarised azimuthal asymmetries are different from zero and different for positive and negative hadrons
- all the transverse spin asymmetries have been measured to be compatible with zero

HERMES, COMPASS, BELLE data:

consistent picture first fits, extractions of the new DFs, and predictions for other experiments

still, a lot of expectation for the higher energy COMPASS proton data

PHYSICAL REVIEW D 72, 054028 (2005)

Single-transverse-spin asymmetries: From deep inelastic scattering to hadronic collisions

Werner Vogelsang^{1,2,*} and Feng Yuan^{2,†}

ECT*, June 12, 2008

It will be very interesting to check these predictions with future COMPASS data for a proton target. Thanks to the higher Q^2 , such data would also help in confirming the leading-twist nature of the Sivers and Collins asymmetries.

the COMPASS experiment

results from ⁶LiD data

- unpolarised azimuthal asymmetries
- Collins asymmetry
- Sivers asymmetry
- other TMD asymmetries

first results from NH₃ data

Collins and Sivers asymmetries

conclusions

2007 Transverse data statistics

2007 run: May to November

equally shared between transverse and longitudinal

Transformer verbraiter	Period	"Weeks"	Target Polarization
data taking:	1	25 / 26	- + - / + - +
dutu tuking.	2	27 / 28	-+-/+-+
	3	30 / 31	+ - + / - + -
Data used for these results	4	39 / 40	+ - + / - + -
	5	41 / 42a	-+-/+-+
	6	42b / 43	+ - + / - + -

several stability tests have been performed

- detectors and triggers performances
- event reconstruction
- K₀ reconstruction
- distributions of kinematical variables:

 $(\mathbf{z}_{vtx}, \mathbf{E}_{\mu'}, \phi_{\mu'}, \mathbf{x}_{Bj} \mathbf{Q}^{2}, y, \mathbf{W}, \mathbf{E}_{had}, \phi_{had_{Lab}}, \theta_{had_{Lab}}, \phi_{had_{GNS}}, \theta_{had_{GNS}}, p_{t})$

~20% of the total collected data has been used for this analysis

Collins asymmetry – proton data

integrated over x and z

statistical errors only; systematic errors ~ 0.3 σ_{stat}

at small x, the asymmetries are compatible with zero in the valence region the asymmetries are different from zero, of opposite sign for positive and negative hadrons, and have the same strength and sign as HERMES

Collins asymmetry – proton data

COMPA

Collins asymmetry – proton data

comparison with M. Anselmino et al. predictions

Sivers asymmetry – proton data

integrated over x and z

statistical errors only; systematic errors ~ 0.5 σ_{stat}

the measured symmetries are small, compatible with zero

ECT*, June 12, 2008

COMPA

Sivers asymmetry – proton data

COMPA

Sivers asymmetry- proton data

comparison with the most recent predictions from M. Anselmino et a.

arXiv:0805.2677

OMPA

Results: Sivers asymmetry

comparison with predictions from

S.Arnold, A.V.Efremov, K.Goeke, M.Schlegel and P.Schweitzer, arXiv:0805.2137

$$A_{UT\,\text{measured}}^{\sin(\phi-\phi_S)} = \left\{ \text{'twist-2 Sivers effect' in Eqs. (11, 15)} \right\} + C(Q) \frac{M_N^2}{Q^2}$$

Maybe such corrections are irrelevant for $Q^2 > 1 \text{ GeV}^2$ which is typically used as DIScut. In any case, a careful comparison of all (present and future) data from COMPASS, HERMES and JLab will shed light on the possible size of power corrections.

ECT*, June 12, 2008

Anna Martin

conclusions

COMPASS preliminary results on

- unpolarised hadron asymmetries on deuteron for positive and negative hadrons
- Collins and Sivers asymmetries on protons
 - Collins asymmetry different from zero
 the effect is there at COMPASS energies
 - Sivers asymmetry: smaller, compatible with zero to be understood

near future: analysis of the whole 2007 proton data sample

longer term:

transverse spin physics is one of the items being spelled out for the future COMPASS program

the study of transverse spin effects needs further precise measurements and the COMPASS facility is the only place where SIDIS can be measured at high energy

ECT*, June 12, 2008

Results: Sivers asymmetry

hermes

ECT*, June 12, 2008