Exclusive meson production

recent experimental results

Andrzej Sandacz

Sołtan Institute for Nuclear Studies, Warsaw

Electromagnetic Interactions with Nucleons and Nuclei Milos, Greece, September 12-15, 2007

Motivation

- Exclusive vector meson production at small x H1 and ZEUS
- Unpolarised cross sections for ρ^0 at large x CLAS
- Single transverse target spin asymmetries for ρ⁰ HERMES and COMPASS
- More results on spin dependence in VM production COMPASS and HERMES
- Solution Exclusive π^+ and π^0 production

HERMES, CLAS and JLAB Hall A

Conclusions

Why hard exclusive meson production ?

Nucleon structure

Hard exclusive processes (DVCS + DVMP)

constrain GPDs

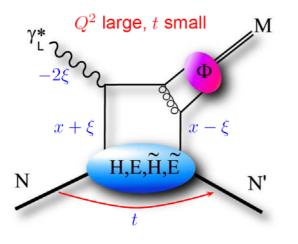
'Holy Grails' of GPDs:

- distribution of partons in transverse plane vs. x 'nucleon tomography'
- orbital angular momentum of quarks
- VM production at small x sensitive to gluons

Meson structure Deep virtual meson production

wave function / DA

Mechanism of high energy diffraction (exclusive VM production)


BFKL vs. DGLAP, k_t -factorisation, ...

Space-time evolution of hadronic fluctuations of γ^*

Color Transparency (also Color Opacity) – important predictions of pQCD

cf. talk by K. Hafidi

Hard exclusive meson production

4 Generalised Parton Distributions (GPDs) for each quark flavour and for gluons

GPDs depend on 3 variables: x, ξ, t

 \succ factorisation proven only for $\sigma_{\rm I}$ $\sigma_{\rm T}$ suppressed of by $1/Q^2$ necessary to extract longitudinal contribution to observables (σ_1 , ...)

 \blacktriangleright allows separation (H,E) \leftrightarrow ($\widetilde{H},\widetilde{E}$) and wrt quark flavours

Flavour sensitivity of DVMP on the proton

ρ ⁰	2u+d, 9g/4	
ω	2u-d, 3g/4	
φ	s, g	
ρ+	u-d	
J/ψ	g	

Ĥ ĨE └ ╹ Vector mesons (ρ, ω, ϕ) Pseudoscalar mesons (π, η)

conserve

flip nucleon helicity

> quarks and gluons enter at the same order of α_{s}

 \succ wave function of meson (DA Φ)

additional information/complication

LT-LO observables in hard exclusive meson production relevant for GPDs

for vector mesons: ρ^0 , ρ^+ , f_2 , ...

unpolarised
cross section
$$(\sigma_{00}^{++} \equiv \sigma_L)$$
 $\frac{1}{\Gamma'} \frac{d\sigma_{00}^{++}}{dt} = (1 - \xi^2) |\mathcal{H}_M|^2 - \left(\xi^2 + \frac{t}{4M_p^2}\right) |\mathcal{E}_M|^2 - 2\xi^2 \operatorname{Re}\left(\mathcal{E}_M^* \mathcal{H}_M\right),$
transverse target
spin asymmetry $\frac{1}{\Gamma'} \operatorname{Im} \frac{d\sigma_{00}^{+-}}{dt} = -\sqrt{1 - \xi^2} \frac{\sqrt{t_0 - t}}{M_p} \operatorname{Im}\left(\mathcal{E}_M^* \mathcal{H}_M\right)$

— access to GPD E related to orbital momentum

for pseudoscalar mesons: $\pi^{0},\,\pi^{+},\,\eta\,,\,\ldots$

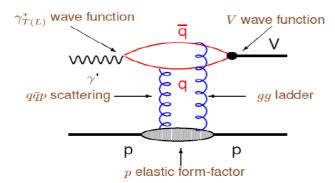
unpolarised cross section

 $\frac{1}{\Gamma'} \frac{d\sigma_{00}^{++}}{dt} = (1-\xi^2) |\tilde{\mathcal{H}}_M|^2 - \xi^2 \frac{t}{4M_p^2} |\tilde{\mathcal{E}}_M|^2 - 2\xi^2 \operatorname{Re}(\tilde{\mathcal{E}}_M^* \tilde{\mathcal{H}}_M),$

transverse target spin asymmetry

$$\frac{1}{\Gamma'} \operatorname{Im} \frac{d\sigma_{00}^{+-}}{dt} = \sqrt{1-\xi^2} \frac{\sqrt{t_0-t}}{M_p} \xi \operatorname{Im} (\tilde{\mathcal{E}}_M^* \tilde{\mathcal{H}}_M)$$

$$\Gamma' = \frac{\alpha_{\rm em}}{Q^6} \frac{x_B^2}{1 - x_B} \qquad \qquad \xi = \frac{x_B}{2 - x_B}, \qquad \qquad -t_0 = \frac{4\xi^2 M_p^2}{1 - \xi^2}$$
(large Q² approximation)

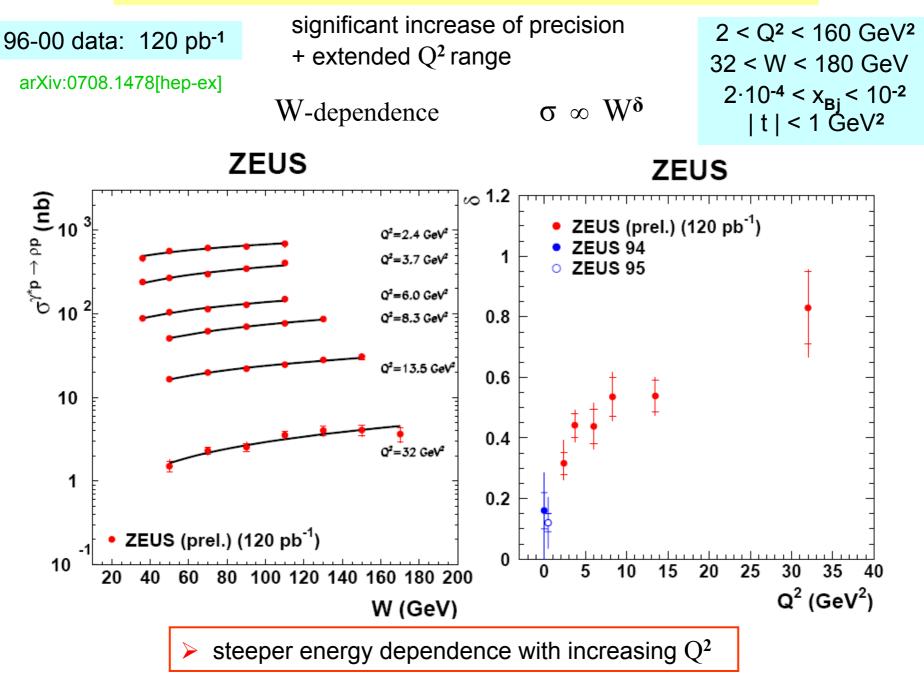

 ${\mathcal H}_{_{\mathcal M}}, \widetilde{{\mathcal H}}_{_{\mathcal M}}, {\mathcal E}_{_{\mathcal M}}, \widetilde{{\mathcal E}}_{_{\mathcal M}}$ are integrals of GPDs $H, \widetilde{H}, E, \widetilde{E}$

appropriate for production of meson $\ensuremath{\mathcal{M}}$

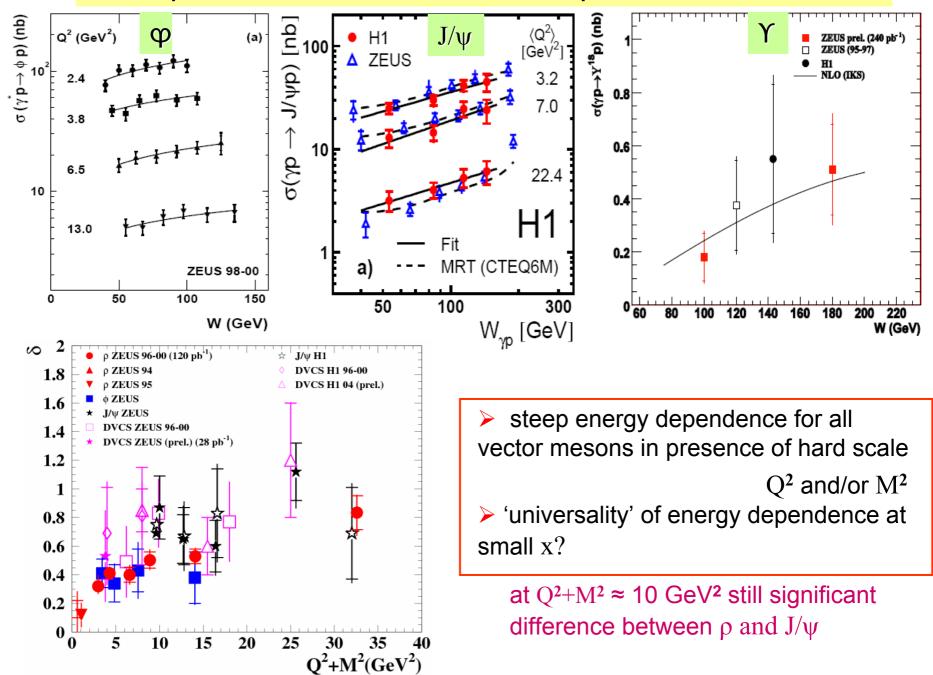
Models for exclusive VM production at small *x*

- > at small x sensitivity mostly to gluons
- > at very small x huge NLO corrections, large ln(1/x) terms (BFKL type logs)

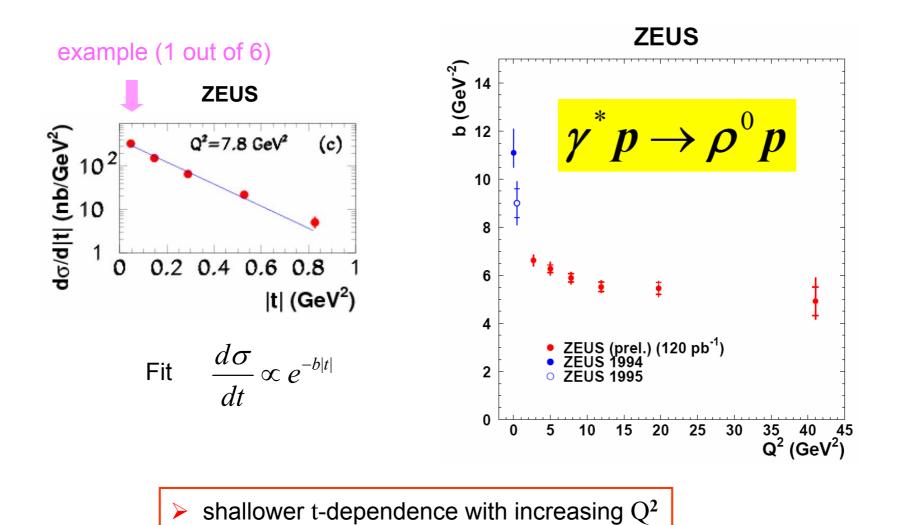
pQCD models to describe colour dipole-nucleon cross sections and meson WF

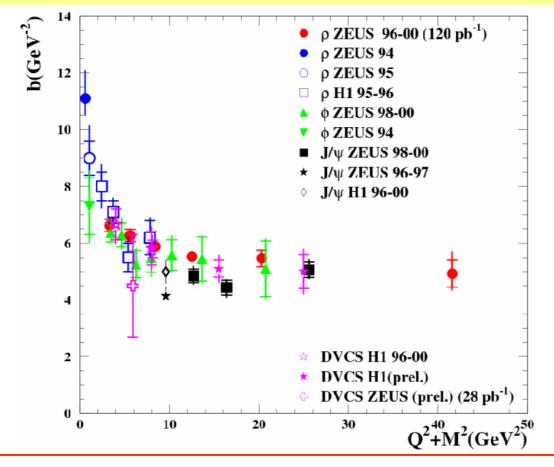

dipole transv. size	W-dep.	t-dep.
large	weak	steep
small	strong	shallow

- Frankfurt-Koepf-Strikman (FKS) Phys.Rev. D57 (1998) 512
- Martin-Ryskin-Teubner (MRT) Phys.Rev. D62 (2000) 014022
- Farshaw-Sandapen-Shaw (FSS) Phys.Rev. D69 (2004) 094013
- Kowalski-Motyka-Watt (KMW) Phys.Rev. D74 (2006) 074016


• Dosch-Fereira (DF) hep-ph/0610311 (2006) sensitivity to different gluon density distibutions

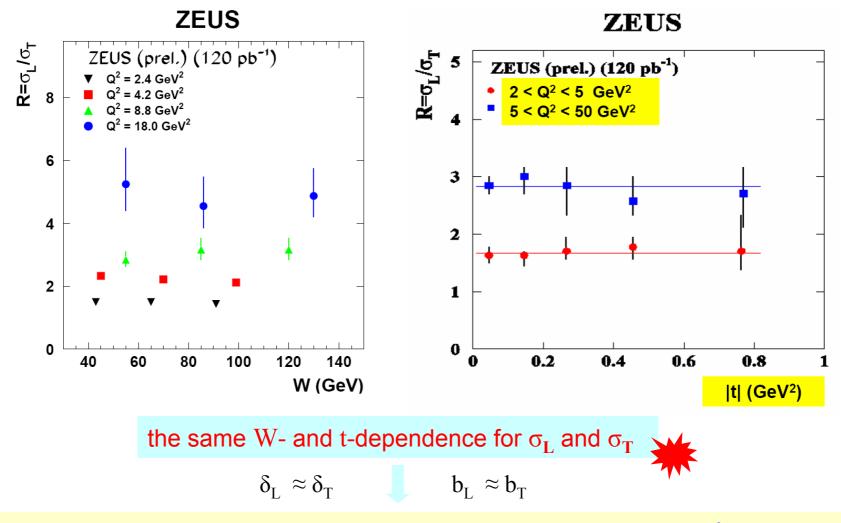
sensitivity to ρ^0 wave function


Recent ZEUS results on exclusive ρ^0 production


W-dependence for hard exclusive processes at small x

 $d\sigma / dt - \rho^0$

t-dependence for hard exclusive processes at small x

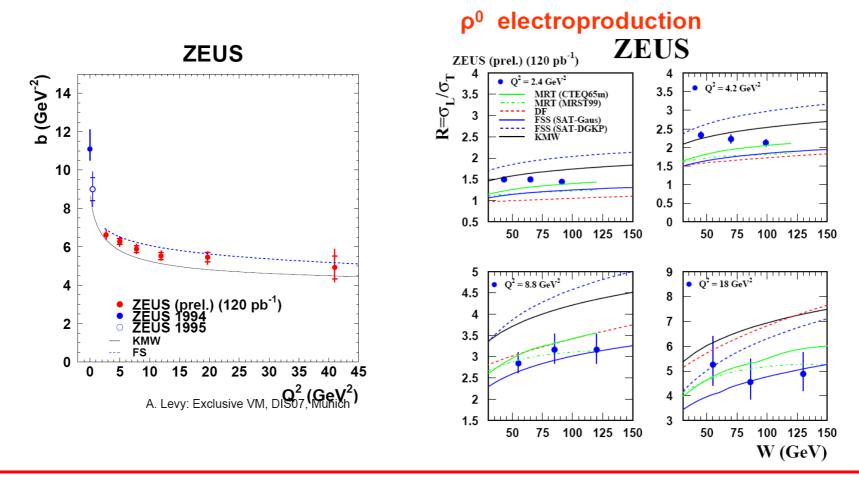


➢ b-slopes decrease with increasing scale Q^2 and/or M^2 approaching a limit ≈ 5 GeV⁻² at large scales

> approximate 'universality' of slopes as a function of $(Q^2 + M^2)$

recent data suggestive of possible \approx 15% difference between ρ and J/ ψ

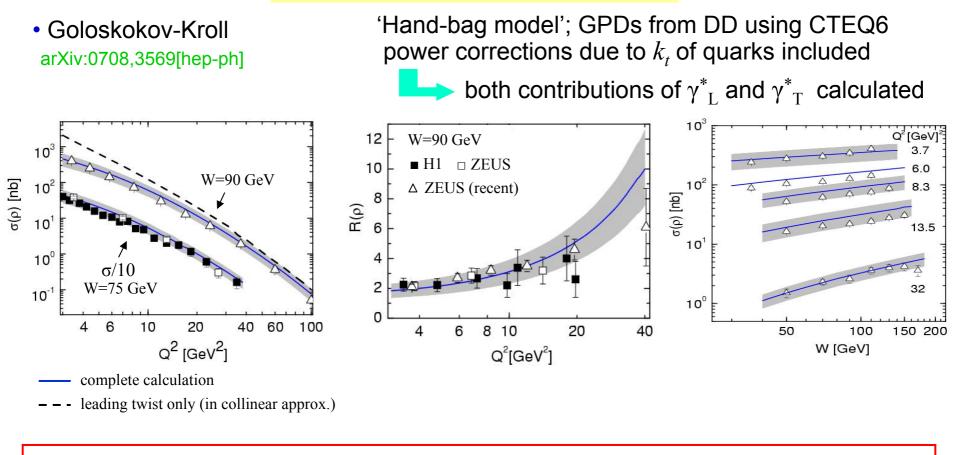
Selected results on $R = \sigma_L / \sigma_T$ for ρ^0 production



the same size of the longitudinal and transverse γ^* involved in hard ρ^0 production

i.e. contribution of large qqbar fluctuations of transverse γ^* suppressed

Comparison to theory

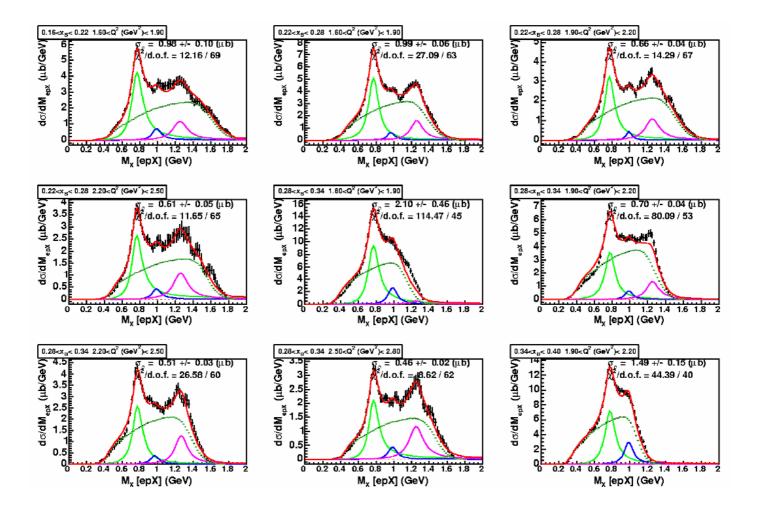

extensive comparison of the models to recent ZEUS ρ^0 data in arXiv:0708.1478[hep-ex] below just selected examples

considered models describe qualitatively all features of the data reasonably well

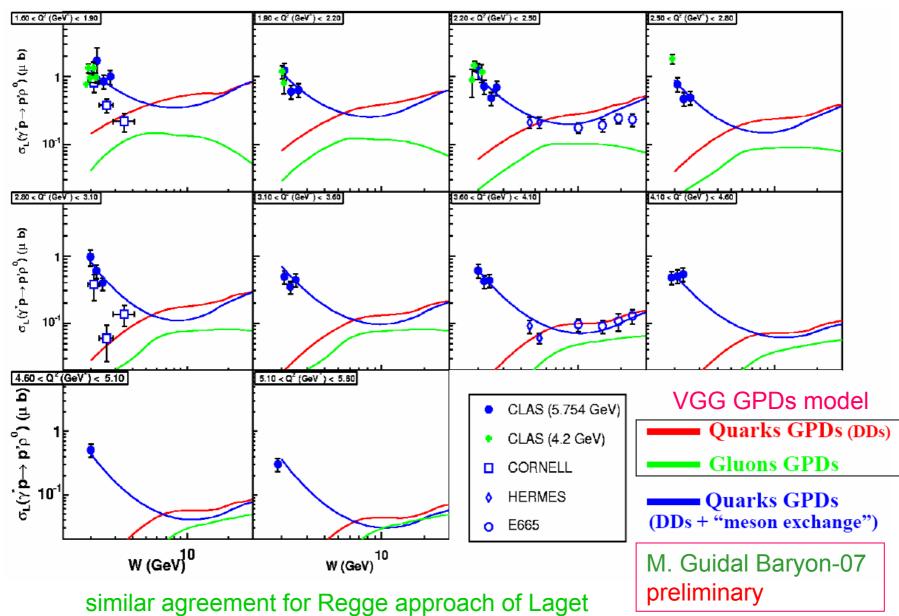
recent ZEUS data are a challenge; none of the models gives at the moment satisfactory quantitative description of all features of the data

More comparison to theory

Exclusive ρ^0 production at 5.75 GeV from CLAS


 $e p \rightarrow e p \pi^+(\pi)$

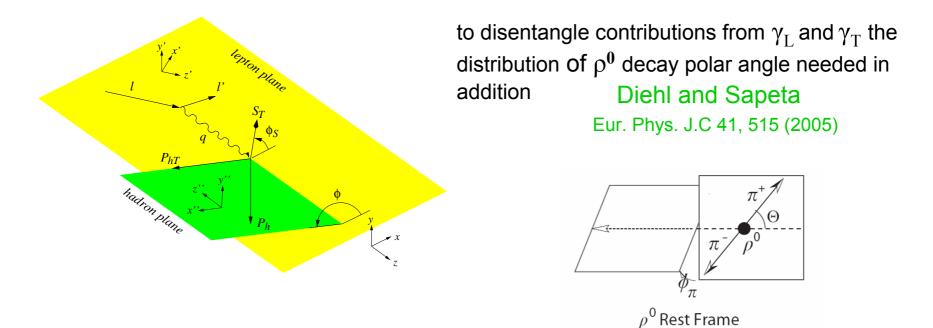
strong interference with $\Delta^{++}\pi^{-}$ production + $f_0(980)$ + $f_2(1270)$


strong correlation between Q² and x

 t_{min} increases with Q² and x (> 1.0 GeV² at x > 0.5)

1.6 < Q² < 5.6 GeV² 1.8 < W < 2.5 GeV 0.16 < x_{Bj} < 0.7 | t_{min} | < | t | < 3 GeV²

Longitudinal cross section $\sigma_L(\gamma^*p \rightarrow \rho^0_L p)$ and various GPD contributions


for the bins where data dominated by small t

Transverse target spin asymmetry for exclusive ρ^0 production

Give access to GPD *E* related to the orbital angular momentum of quarks $\frac{1}{2} \int_{-1}^{1} dx \ x \ [H_q(x,\xi,t) + E_q(x,\xi,t)] \stackrel{t \to 0}{=} J_q = \frac{1}{2} \Delta \Sigma + L_q \qquad \text{Ji's sum rule}$

So far GPD *E* poorly constrained by data (mostly by Pauli form factors)

The asymmetry defined as $A_{UT}(\varphi,\varphi_s) = \frac{1}{S_T} \frac{d\sigma(\varphi,\varphi_s) - d\sigma(\varphi,\varphi_s + \pi)}{d\sigma(\varphi,\varphi_s) + d\sigma(\varphi,\varphi_s + \pi)}$

Method for L/T separation used by HERMES

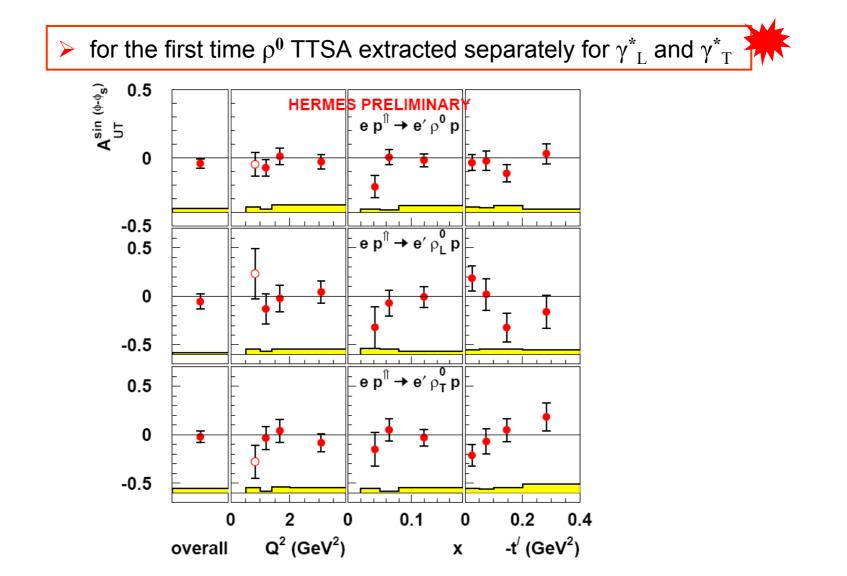
A. Rostomyan and J. Dreschler arXiv:0707.2486

Angular distribution $W(\cos \theta, \phi, \phi_s)$ and Unbinned Maximum Likelihood fit

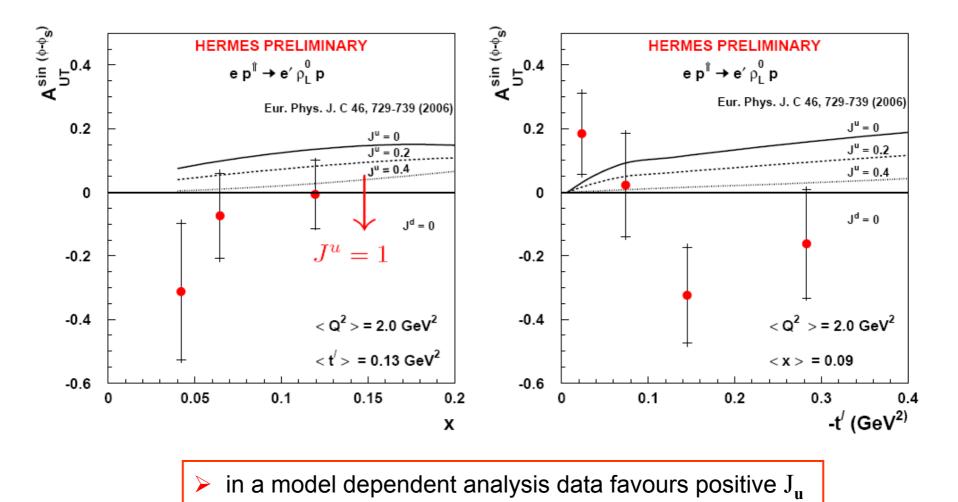
Assuming SCHC
$$W(\cos\theta, \varphi, \varphi_{S}) \propto \left[\cos^{2}\theta r_{00}^{04} \{1 + A_{UU,\rho L}(\varphi) + S_{T} A_{UT,\rho L}(\varphi, \varphi_{S})\} + \frac{1}{2} \sin^{2}\theta (1 - r_{00}^{04}) \{1 + A_{UU,\rho T}(\varphi) + S_{T} A_{UT,\rho T}(\varphi, \varphi_{S})\}\right]$$

where
$$A_{UU,\rho L(\rho T)}(\varphi) = A_{UU,\rho L(\rho T)}^{\cos(\varphi)} \cos(\varphi) + A_{UU,\rho L(\rho T)}^{\cos(2\varphi)} \cos(2\varphi)$$

 $A_{UT,\rho L(\rho T)}(\varphi) = A_{UT,\rho L(\rho T)}^{\sin(\varphi-\varphi_S)} \sin(\varphi-\varphi_S) + \dots$ (5 additional terms $A_{UT,\rho L(\rho T)}^{\sin(m\varphi\pm\varphi_S)} \sin(m\varphi\pm\varphi_S)$)


•
$$A_{UU,\rho L(\rho T)}^{\cos(\varphi)}$$
 and $A_{UU,\rho L(\rho T)}^{\cos(2\varphi)}$ obtained from SDMEs $r_{00}^5, r_{11}^5, r_{00}^1, r_{11}^1$
• 2 x 6 = 12 parameters $A_{UT,\rho L(\rho T)}^{\sin(m\varphi\pm\varphi_S)}$ from the fit

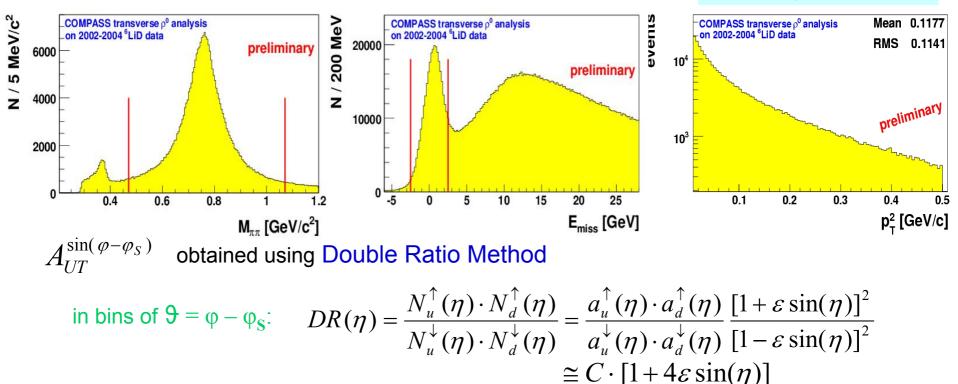
$$A_{UT,\rho L}^{\sin(\varphi-\varphi_S)} = -\frac{\operatorname{Im} \sigma_{00}^{+-}}{\sigma_L} \sim \operatorname{Im} \left(\mathcal{T}^*_{\mathcal{M}} \mathcal{H}_{\mathcal{M}} \right) / |\mathcal{H}_{\mathcal{M}}|^2$$


a prerequisite for the method: determination of acceptance correction as a function of $\ cos \ \theta, \ \phi$ and ϕ_s

 ρ^{0} transverse target spin asymmetry from HERMES

Transversely polarised proton target, $P_T \approx 75\%$ 2002-2005 data, 171.6 pb⁻¹ 1 < Q² < 7 GeV² W² > 4 GeV² 0.023 < x_{Bj} < 0.4 | t' | < 0.4 GeV²

ρ^{0} transverse target spin asymmetry from HERMES



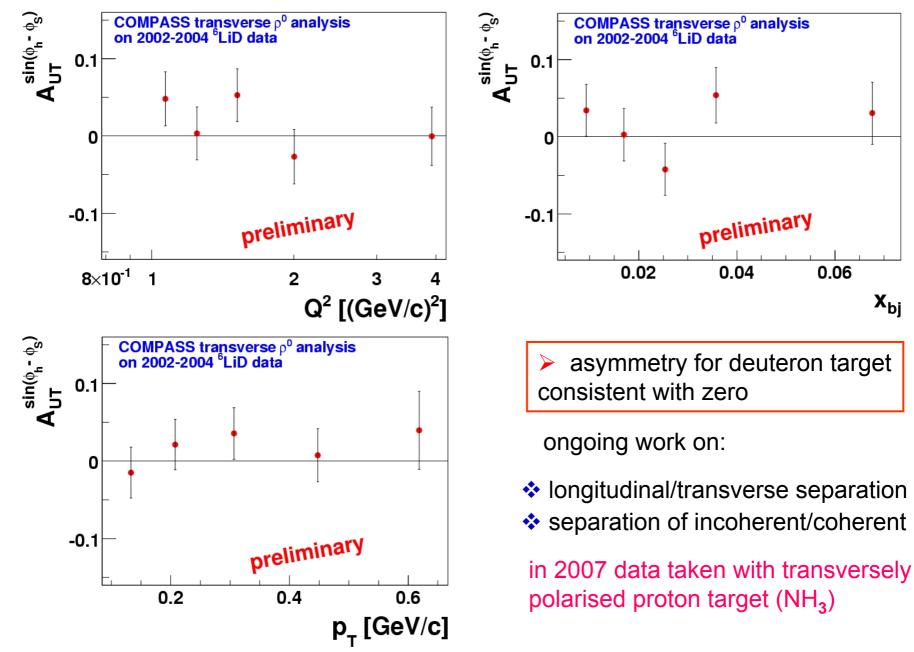
in agreement with DVCS results from HERMES cf. talk by W.-D. Nowak

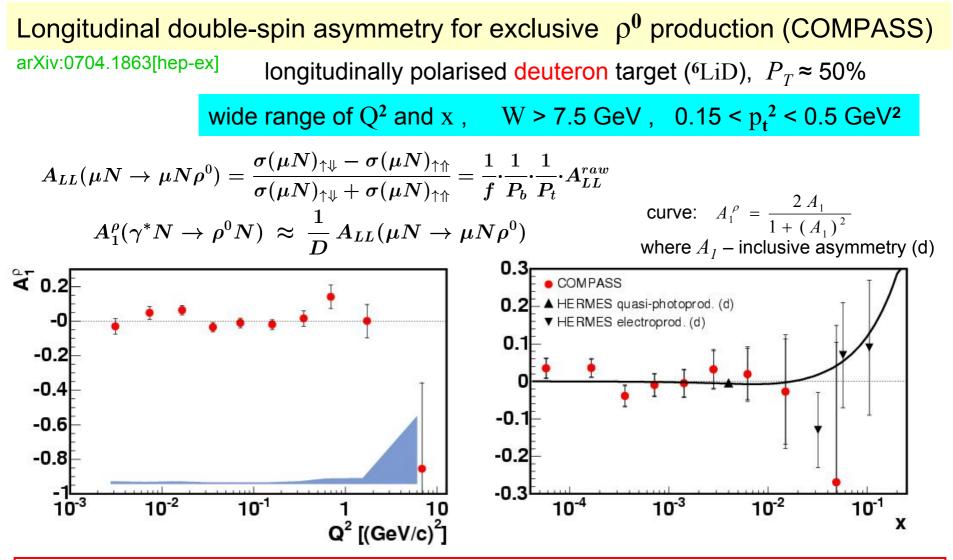
ρ^{0} transverse target spin asymmetry from COMPASS

Transversely polarised deuteron target (⁶LiD), $P_T \approx 50\%$ 2002-2004 data

 $Q^2 > 1 \text{ GeV}^2$ W > 5 GeV $0.005 < x_{Bj} < 0.1$ $0.01 < p_t^2 < 0.5 \text{ GeV}^2$

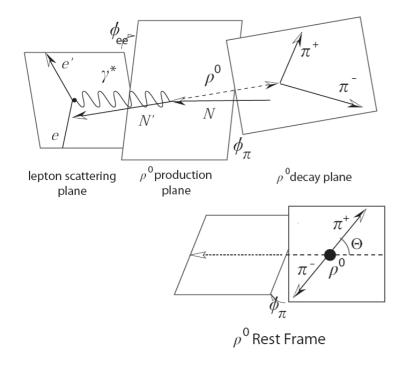
u (*d*) are for upstream (downstream) cell of polarised target arrows indicate transverse polarisation of corresponding cells


raw asymmetry ε from the fit to $DR(\eta)$


$$A_{UT}^{\sin(\varphi-\varphi_S)} = \frac{\varepsilon}{f \cdot \langle P_T \rangle}$$

dilution factor $f \approx 0.38$

ρ^{0} transverse target spin asymmetry from COMPASS


A₁^ρ on polarised deuterons consistent with 0
 > at small Q² and x precise constraint on contribution of exchanges with unnatural parity
 > at large Q² A₁^ρ related to GPDs (higher-twist) ∞ k_T² H̃_g /(Q² H_g) Goloskokov, Kroll (2006)

Spin Density Matrix Elements

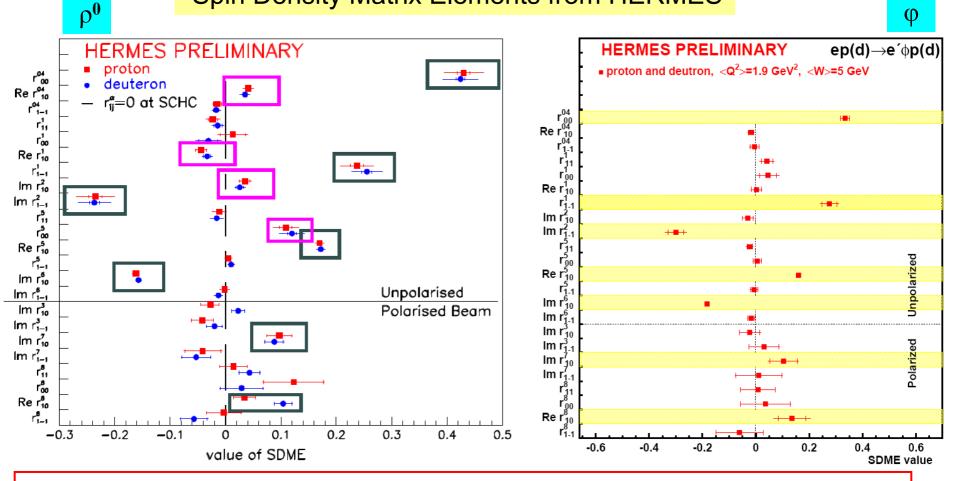
VM angular distributions $W(\cos\theta, \phi, \Phi)$ depend on the spin density matrix elements (SDME) \Rightarrow 23 (15) observables with polarized (unpolarized) beam

SDMEs are bilinear combinations of the helicity amplitudes

$$T_{\lambda m \ \lambda \gamma} (\gamma * N \longrightarrow mN)$$

$$\lambda_{\gamma} = \pm 1, 0 \quad \lambda_{m} = \pm 1, 0$$

(averaged over nucleon spins)



Photon-Nucleon CMS

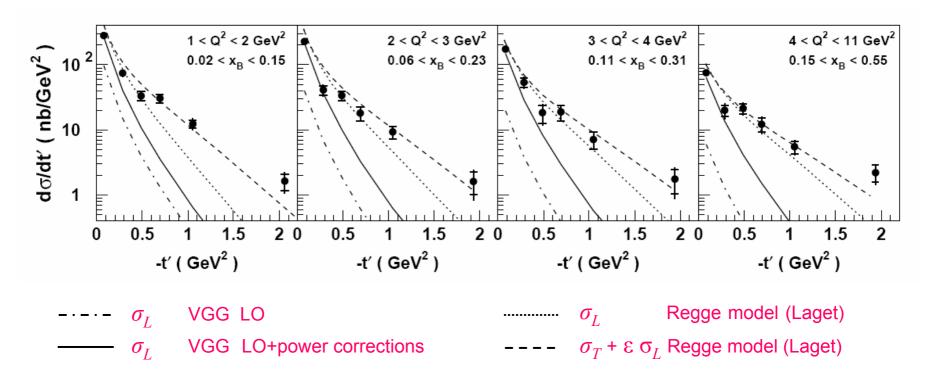
- describe helicity transfer from γ^* to VM
 s-channel helicity conservation (SCHC)
- describe parity of t-channel exchange (NPE vs. UPE)

★ impact on GPD studies – determination of σ_L SDME $r_{00}^{04} \xrightarrow{SCHC} R = \frac{\sigma_L}{\sigma_T}$

Spin Density Matrix Elements from HERMES

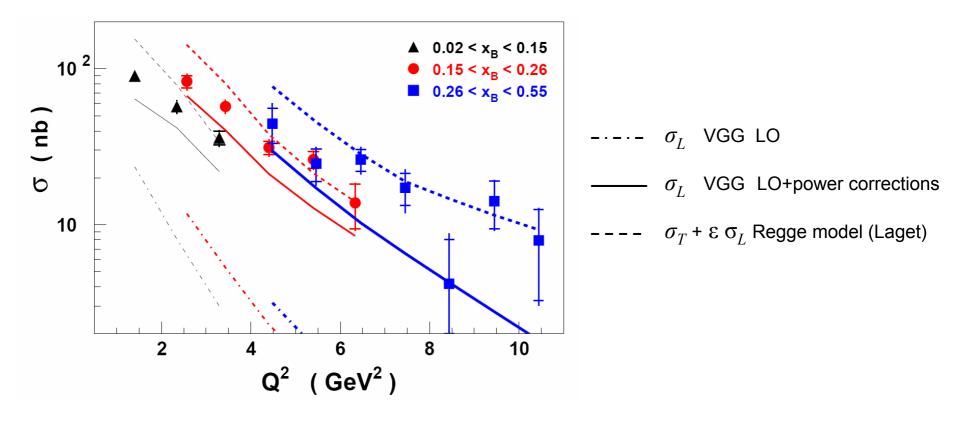
- > for ρ^0 s-channel helicity violation in $\operatorname{Re} r_{10}^{04}$, $\operatorname{Re} r_{10}^1$, $\operatorname{Im} r_{10}^2$ (mild) and r_{00}^5 (~ 10%)
- \blacktriangleright for ρ^{0} a (small) contribution of unnatural-parity exchanges seen
- \blacktriangleright for ϕ no s-channel helicity violation
- for proton and deuteron targets SDMEs (mostly) the same

more in talk of S. Manayenkov


Exclusive π^+ production from HERMES

accepted for Phys Lett B

 $e p \rightarrow e n \pi^+$


1996-2005 data with proton target (unpolarised and polarised)

- L/T separation at HERMES not possible
- σ_T expected to be supressed as $1/Q^2$ dominance of σ_L at large Q^2 supported by Regge model (Laget 2005)
- ♦ at leading twist σ_L sensitive to GPDs \tilde{H} and \tilde{E}
- \diamond at small |t'| E dominates as it contains *t*-channel pion-pole

1 < Q² < 11 GeV² W² > 11 GeV² 0.02 < x_{Bj} < 0.55 | ť | < 2 GeV²

Exclusive π^+ production from HERMES

- LO calculations underestimate the data
- \blacktriangleright data support magnitude of the power corrections (k_t and soft overlap)
- Regge calculations provides good description of the magnitude of σ_{tot}

and of t' and Q^2 dependences

Beam spin asymmetry in exclusive π^0 production from CLAS

 $e p \rightarrow e p \pi^0$

2005 data, $E_e = 5.77$ GeV, all final state particles measured Extended acceptance for γ 's due to installation of Inner Calorimeter

- essentially no experimental data for neutral pseudoscalar mesons in this range
- ✤ at leading twist σ_L sensitive to GPDs \tilde{H}
- no *t*-channel pion-pole (in contrast to exclusive π^+ production)
- magnitude of σ_T contribution unknown

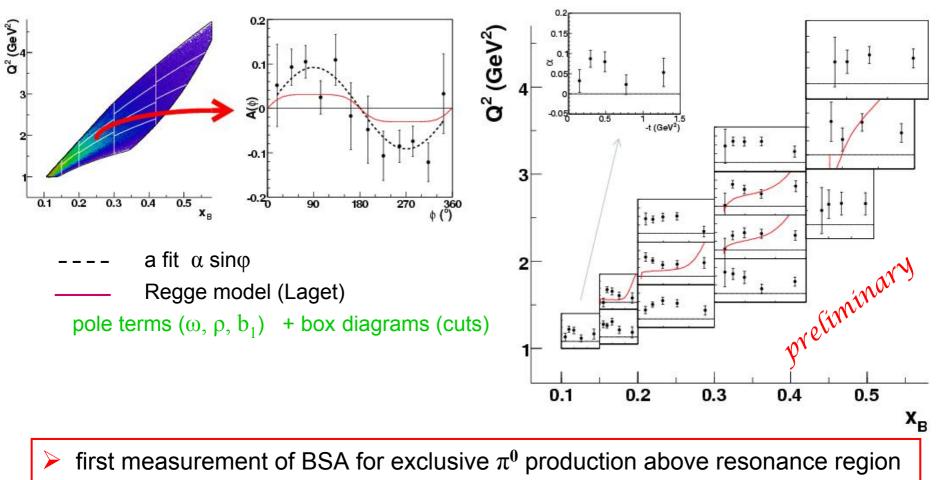
$$\frac{d^2\sigma_{\gamma^*p\to p\pi^0}}{dt\,d\varphi} = \frac{1}{2\pi} \left(\frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \varepsilon \cos 2\varphi \frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \varphi \frac{d\sigma_{TL}}{dt} + h\sqrt{2\varepsilon(1-\varepsilon)} \sin \varphi \frac{d\sigma_{TL'}}{dt} \right)$$

 $h = \pm 1$ is the beam helicity

 $1 < Q^2 < 4.5 \text{ GeV}^2$

W > 2 GeV

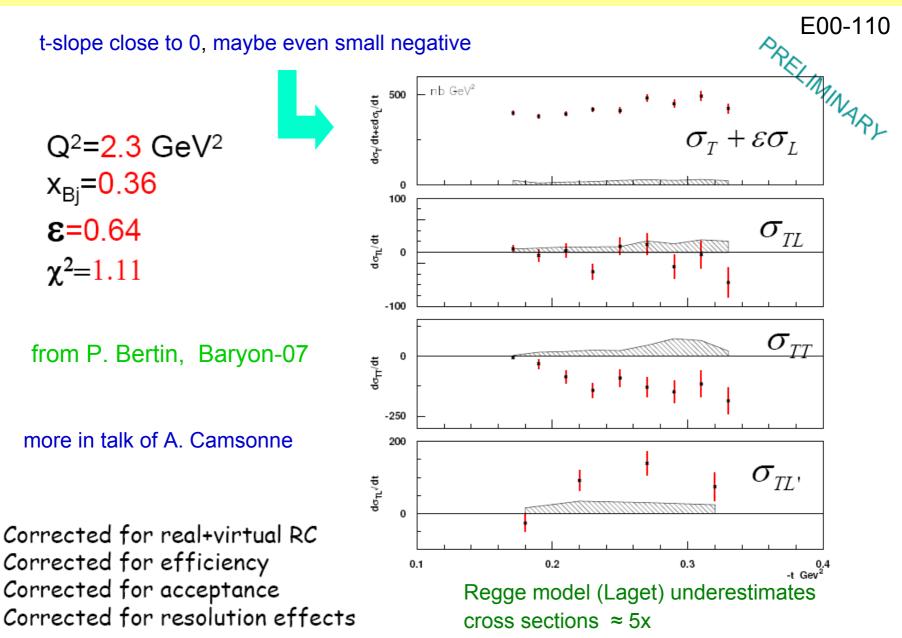
 $0.1 < x_{Bi} < 0.55$


0.09 < | t | < 1.8 GeV²

Beam Spin Asymmetry has the following $\boldsymbol{\phi}$ dependence

$$A_{LU} = \frac{d^4 \vec{\sigma} - d^4 \vec{\sigma}}{d^4 \vec{\sigma} + d^4 \vec{\sigma}} = \frac{\alpha \sin \varphi}{1 | +\beta \cos \varphi + \gamma \cos 2\varphi}$$

any non-zero BSA would indicate L-T interference
 i.e. contribution not described in terms of GPD's


Beam spin asymmetry in exclusive π^0 production from CLAS

sizeable BSA (0.04 – 0.11) indicate that both transverse and longitudinal amplitudes participate

- necessity for L/T separation and measurements at higher Q^2

Cross sections for exclusive π^0 production from JLAB HALL A DVCS Collab.

Prospects for more results on exclusive meson production

- Other ongoing analyses of the data already taken
 - ZEUS + H1 data from HERA II : ρ^0 , ϕ , J/ψ , Υ cross sections + SDMEs
 - HERMES : ρ^0 , ϕ SDMEs + unpolarised cross sections for full set of data including 2006-2007, expected factor of 2 gain in accuracy, hopefully with RD π^+ transverse target spin asymmetry (protons)
 - COMPASS : ρ^0 TSA for polarised deuterons with γ^*_L - γ^*_T separation
 - CLAS : $\rho^{\scriptscriptstyle +},\,\phi,\,\pi^{\scriptscriptstyle +},\,\pi^{0}\,\text{and}\,\,\eta$ cross sections
- Data being taken or expected soon
 - COMPASS : ρ⁰ from transversely polarised proton target (2007) mesons from longitudinally polarised proton target (2007 (?))
 - Hall A DVCS Coll.: π^0 Rosenbluth separation (2009)
 - CLAS : π^0 and η cross sections and BSA (2008), LTA (2009)
- Future projects with impact on GPDs
 - COMPASS : DVCS and DVMP with Recoil Detector, large LH (LD) target and extended EM calorimetry , ρ up to 20 GeV², γ , ω , ϕ , π and η up to 7 GeV² (2010)
 - JLAB 12 GeV Upgrade (2014) cf. talk by B. Wojtsekhowski
 - PANDA at FAIR (2014) cf. next-to-last talk on Saturday
 - EIC (> 2014) cf. talk by H. Kowalski

Conclusions

- New precise data on cross sections and SDME's result in significantly more stringent constraints on the models for DVMP
- To describe present data on DVMP, both at large and small x, including power corrections (or higher order pQCD terms) is essential
- First experimental efforts in DVMP to constrain GPD E and quark orbital momentum
- A rich program of future experiments and projects with impact on studies of DVMP and GPDs