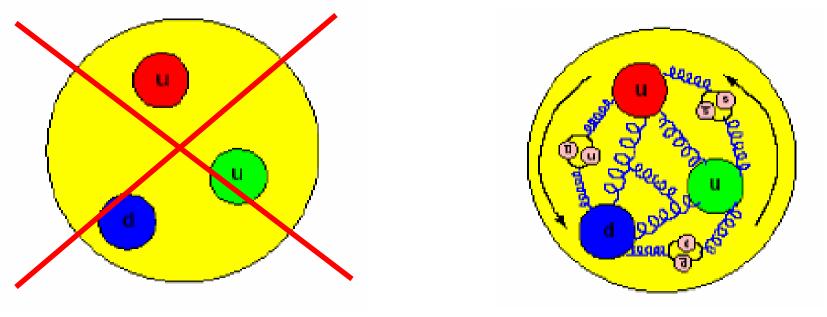


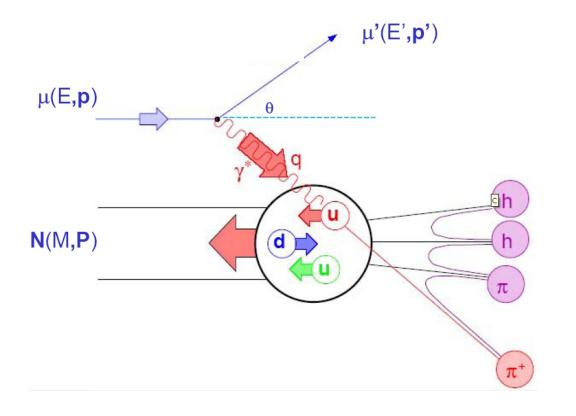
The polarized Valence Quark Distribution from COMPASS

Nikolaev Kirill

JINR, Dubna


SPIN-Praha-2007

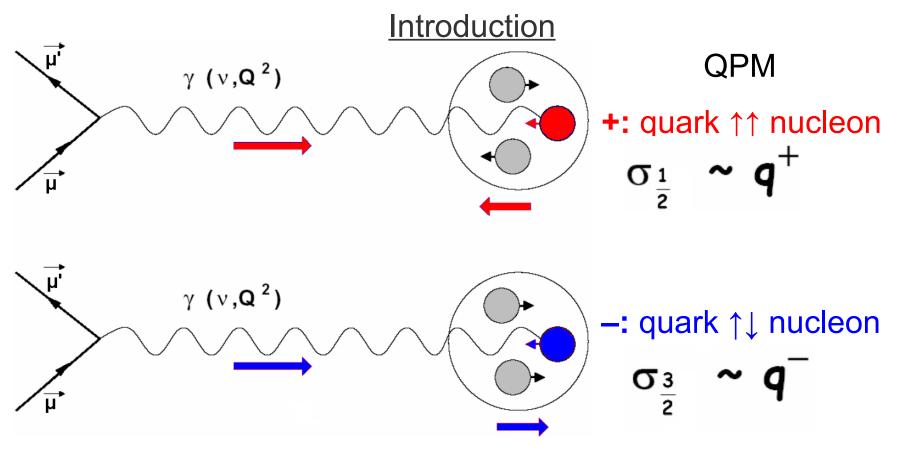
<u>Outline</u>


- Introduction
- Cuts and statistics
- Asymmetries
- $\Delta u_v + \Delta d_v$ results
- Estimation for the first moment (LO)
- Summary

Static SU(6) quark model: $\Delta \Sigma = \Delta u + \Delta d + \Delta s = 1$

EMC (1988): $\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$ (±stat ±syst) $\Delta s + \Delta \overline{s} = -0.14 \pm 0.03$ COMPASS: $\Delta \Sigma = 0.35 \pm 0.03 \pm 0.05$

 $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_a + L_a$ (ħ=1)


Main kinematical variables

•
$$Q^2 = -q^2 = (p-p')^2$$

•
$$x = Q^2/2Mv$$

•
$$z = E_h / v$$

$$\frac{d^{2}\sigma}{d\Omega dE'} \approx \underbrace{c_{1}F_{1}(x,Q^{2}) + c_{2}F_{2}(x,Q^{2})}_{\text{spin independent}} + \underbrace{c_{3}g_{1}(x,Q^{2}) + c_{4}g_{2}(x,Q^{2})}_{\text{spin dependent}}$$

 $q^+(x)$ and $q^-(x)$ - the probability density function of finding a quark with a spin $\uparrow\uparrow$ or $\uparrow\downarrow$ to the nucleon spin.

From experiments it is known, unpolarized sea is not symmetric:

$$= 0.148 \pm 0.039 \ (NMC)$$

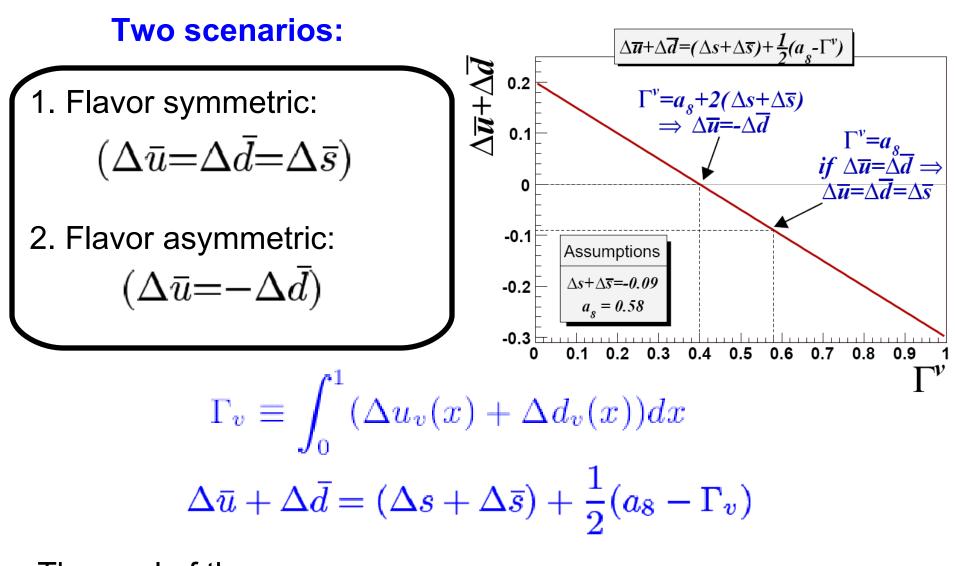
= 0.148 \pm 0.012 \ (E866) \neq 0
= 0.16 \pm 0.03 \ (HERMES)

What we can say about polarized sea?

$$SU_{f}(3) \qquad m_{u} \simeq m_{d} \simeq m_{s} \simeq 0$$

$$a_{0} = \Delta u + \Delta \bar{u} + \Delta d + \Delta d + \Delta s + \Delta \bar{s}$$

$$a_{3} = \Delta u + \Delta \bar{u} - (\Delta d + \Delta \bar{d})$$


$$a_{8} = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} - 2(\Delta s + \Delta \bar{s})$$

$$\Delta \bar{u} + \Delta \bar{d} = (\Delta s + \Delta \bar{s}) + \frac{1}{2}(a_{8} - (\Delta u_{v} + \Delta d_{v}))$$

$$\Delta \bar{u} = 0.35 \pm 0.03 \pm 0.05 \text{ (from COMPASS DIS data)}$$

$$a_{8} = 0.59 \pm 0.03 \text{ (from weak decay Hyperons)}$$
Then:
$$\Delta s + \Delta \bar{s} = \frac{1}{3}(a_{0} - a_{8}) = -0.09 \pm 0.01 \pm 0.02$$

It is possible to find $\Delta \bar{u} + \Delta \bar{d}$ from valence quark distribution

The goal of the measurement is: Γ_v With the precision: $\delta\Gamma_v < |\Delta s + \Delta \bar{s}|$

The hadrons asymmetry contains the fragmentation functions

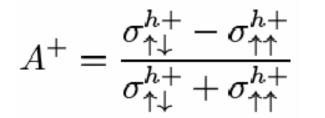
$$A_1^h(x) = \frac{\sigma_{\uparrow\downarrow}^h - \sigma_{\uparrow\uparrow}^h}{\sigma_{\uparrow\downarrow}^h + \sigma_{\uparrow\uparrow}^h} = \frac{\sum_q e_q^2 (\Delta q(x) D_q^h + \Delta \bar{q}(x) D_{\bar{q}}^h)}{\sum_q e_q^2 (q(x) D_q^h + \bar{q}(x) D_{\bar{q}}^h)}$$

The fragmentation functions $D_q^h = \int D_q^h(z) dz$ aren't well know

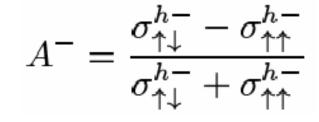
Using $SU_{f}(2)$ and charge conjugation symmetries \rightarrow 3 functions of fragmentation of pion:

$$D_{1} = D_{u}^{\pi^{+}} \stackrel{SU(2)}{=} D_{d}^{\pi^{-}} \stackrel{C}{=} D_{\bar{d}}^{\pi^{+}} \stackrel{SU(2)}{=} D_{\bar{u}}^{\pi^{-}}$$
$$D_{2} = D_{\bar{u}}^{\pi^{+}} \stackrel{SU(2)}{=} D_{\bar{d}}^{\pi^{-}} \stackrel{C}{=} D_{d}^{\pi^{+}} \stackrel{SU(2)}{=} D_{u}^{\pi^{-}}$$
$$D_{3} = D_{s}^{\pi^{+}} = D_{s}^{\pi^{-}} = D_{\bar{s}}^{\pi^{+}} = D_{\bar{s}}^{\pi^{-}}$$

The difference asymmetry was proposed in Phys. Lett. [B230 (1989) 141]


$$A^{+-} = \frac{(\sigma_{\uparrow\downarrow}^{h+} - \sigma_{\uparrow\downarrow}^{h-}) - (\sigma_{\uparrow\uparrow}^{h+} - \sigma_{\uparrow\uparrow}^{h-})}{(\sigma_{\uparrow\downarrow}^{h+} - \sigma_{\uparrow\downarrow}^{h-}) + (\sigma_{\uparrow\uparrow}^{h+} - \sigma_{\uparrow\uparrow}^{h-})}$$

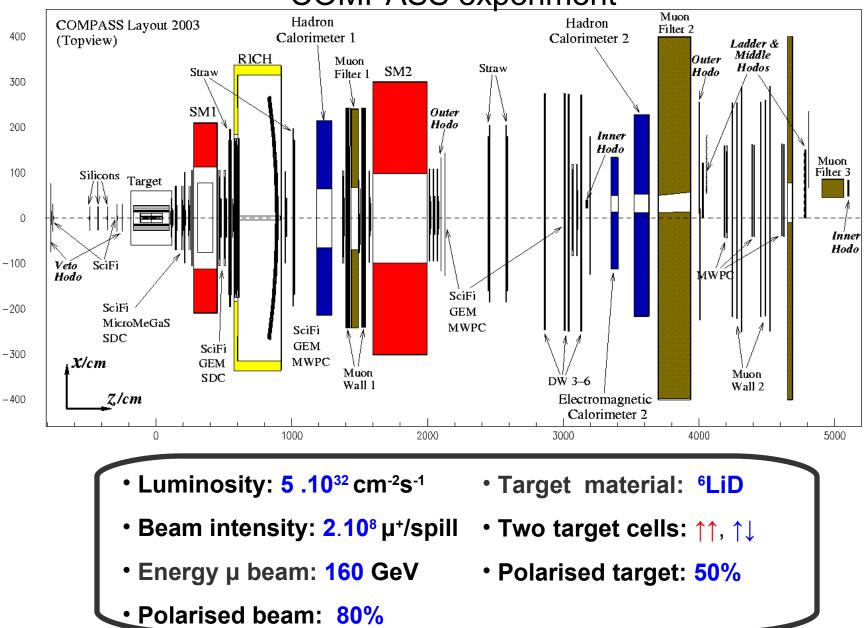
$$A_d^{\pi^+ - \pi^-}(x) = A_d^{K^+ - K^-}(x) = \frac{\Delta u_v(x) + \Delta d_v(x)}{u_v(x) + d_v(x)}$$
in LO QCD for deuteron target:
hadron identification
is needed
is needed
$$\Delta u_v(x) + \Delta d_v(x) = A^{+-}(x) \cdot [u_v(x) + d_v(x)]$$


No

To obtain A⁺⁻, A⁺ and A⁻ asymmetries are used

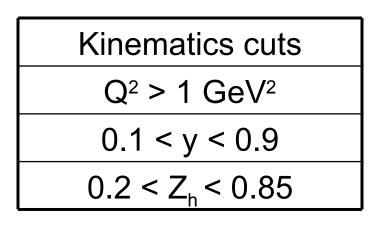
$$A^{+-} = \frac{1}{1-r}(A^+ - rA^-)$$

Where:



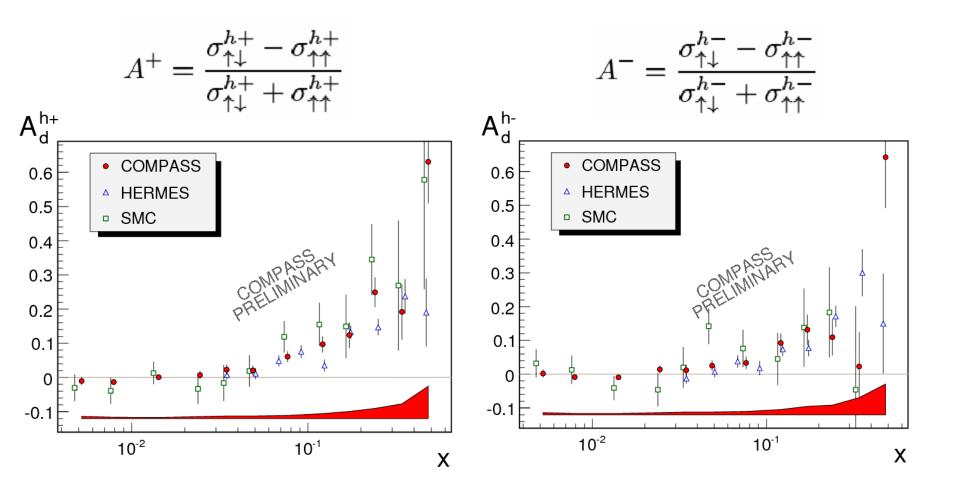
$$r = \frac{\sigma_{\uparrow\downarrow}^{h-} + \sigma_{\uparrow\uparrow}^{h-}}{\sigma_{\uparrow\downarrow}^{h+} + \sigma_{\uparrow\uparrow}^{h+}} = \frac{\sigma^{h-}}{\sigma^{h+}}$$

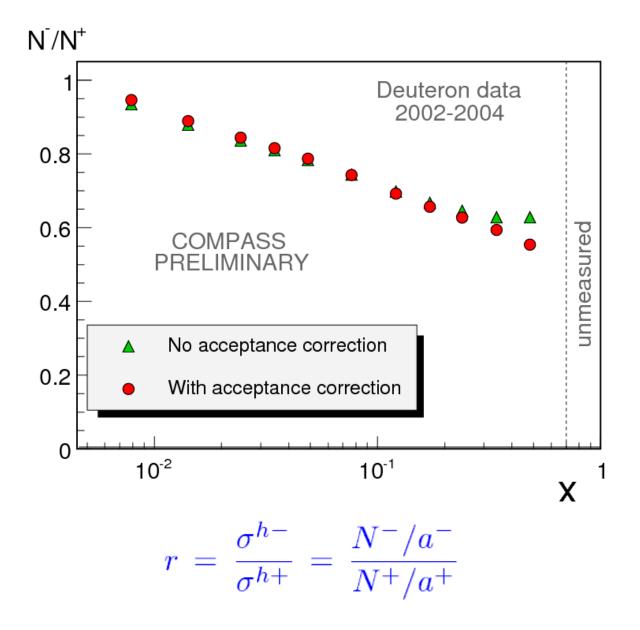
r can be obtained from the ratio of N $^{-}/N^{+}$ corrected with the ratio of acceptances:


$$r = \frac{\sigma^{h-}}{\sigma^{h+}} = \frac{N^-/a^-}{N^+/a^+}$$

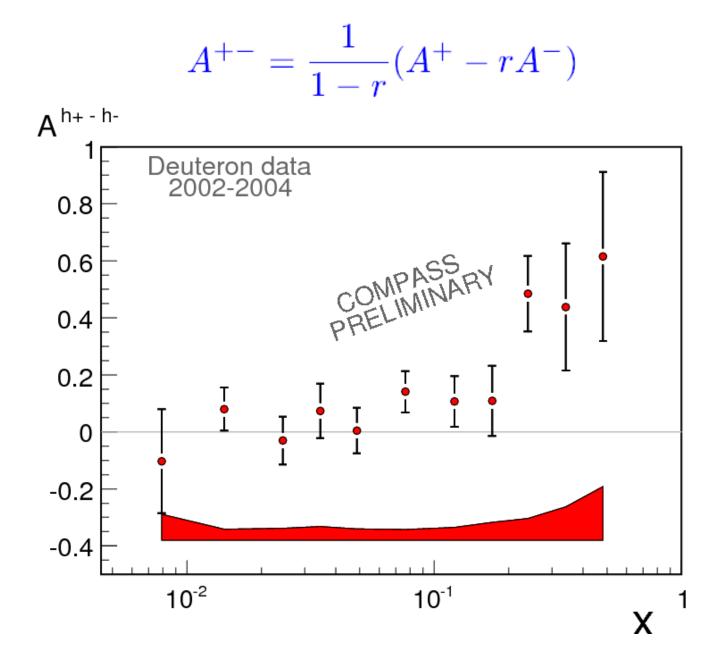
COMPASS experiment

Cuts and statistics


Data from the years 2002 + 2003 + 2004

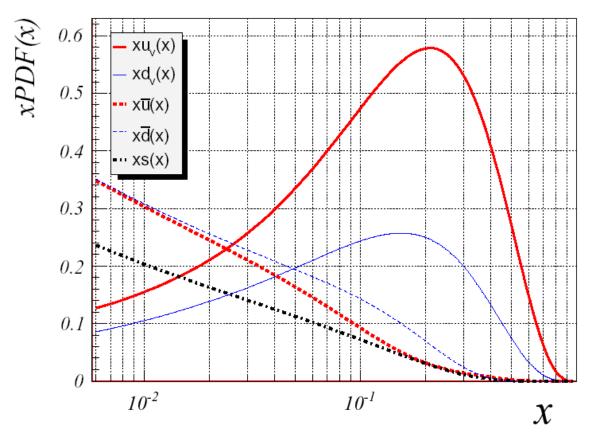

Pos. hadrons	30 x 10 ⁶
Neg. hadrons	25 x 10 ⁶
Cor. (N+, N-)	20%

Asymmetries


Semi-Inclusive asymmetries

Asymmetries

Asymmetries

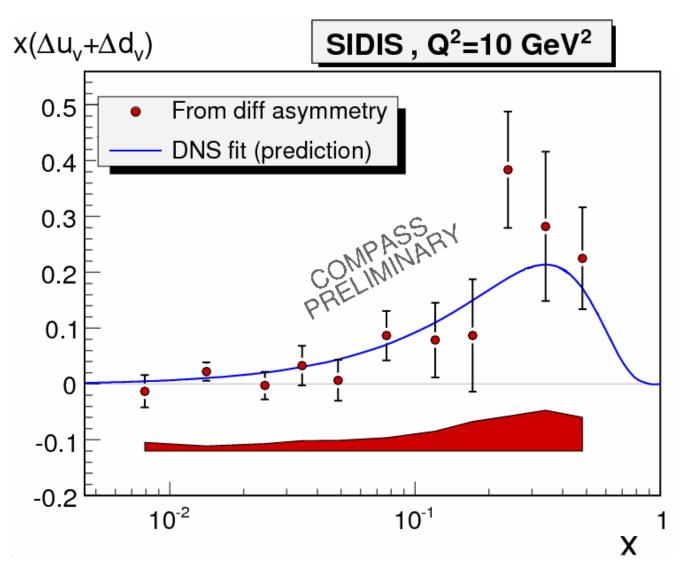


$\Delta u_v(x) + \Delta d_v(x) = A^{+-}(x) \cdot [u_v(x) + d_v(x)]$

LO MRST2004 was used

Unpolarized PDFs:

• with Q²=10 GeV²

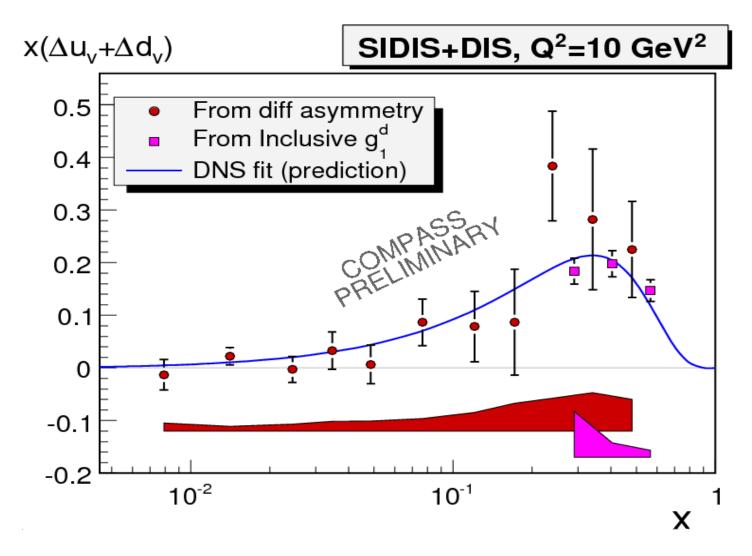

Since all points have different Q^2 (1-70 GeV²) an evolution to common Q^2 is needed

To evolve Δq to $Q^2 = 10 \text{ GeV}^2$: $\Delta q(x, Q^2 = 10) = \Delta q(x, Q^2) + \left[\Delta q^{par}(x, Q^2 = 10) - \Delta q^{par}(x, Q^2)\right]$

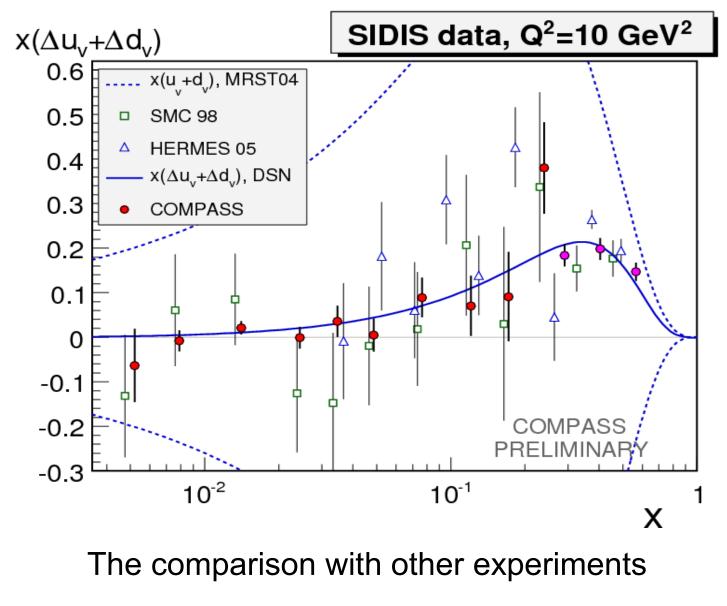
The following parameterization was used:

• LO DNS – D. de Florian, G.A. Navarro, R. Sassot, Phys. Rev. D 71 (2005) 094018 (based on KPP parameterization of FF)

Valence quark distribution (LO):

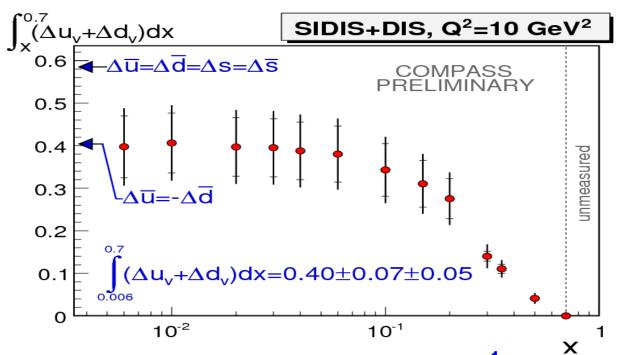

For large *x* the unpolarized sea contribution << unpolarized valence contribution. Due to positivity conditions $|\Delta q| < q$ the polarized sea contribution to the spin the nucleon can be neglected.

$$\Delta u_v + \Delta d_v = \frac{36}{5} \frac{g_1^d(x, Q^2)}{(1 - 1.5\omega_D)} - \left[2(\Delta \bar{u} + \Delta \bar{d}) + \frac{2}{5}(\Delta \bar{s} + \Delta \bar{s})\right]$$


Constraint in SMC & HERMES analyses at x>0.3

$$\Delta \bar{u} = \Delta \bar{d} = \Delta s = 0$$

• Use of g_1^{d} results decreases the statistical error on Δ by a factor 6



Constraint the Δq at high x region

SMC 98, HERMES 05

Estimation for the first moment (LO)

- Contribution from unmeasured region (DNS fit): $\int_{0.7}^{1} (\Delta u_v + \Delta d_v) dx = 0.004$
- In small *x* region the integral is flat.
- The value of Γ_v differs by 2.5 σ_{stat} from symmetric sea scenario:

$$(\Delta \bar{u} + \Delta \bar{d}) \Big|_{Q^2 = 10 \text{ GeV}^2}^{SIDIS + DIS} = (\Delta s + \Delta \bar{s}) + \frac{1}{2}(a_8 - \Gamma_v) = 0.0 \pm 0.04$$

This doesn't mean $\Delta \bar{u} = 0, \Delta \bar{d} = 0$

Estimation for the first moments (LO)

	<i>x</i> -range	Q^2	$\Delta u_v + \Delta d_v$		$\Delta \bar{u} + \Delta \bar{d}$	
		${\rm GeV^2}$	Exp. ∨alue	DNS	Exp. ∨alue	DNS
SMC 98	0.003 - 0.7	10	$0.26 \pm 0.21 \pm 0.11$	0.386	$0.02 \pm 0.08 \pm 0.06$	-0.009
HERMES 05	0.023 – 0.6	2.5	$0.43 \pm 0.07 \pm 0.06$	0.363	$-0.06 \pm 0.04 \pm 0.03$	-0.005
COMPASS	0.006 - 0.7	10	$0.40 \pm 0.07 \pm 0.05$	0.385	$0.0 \pm 0.04 \pm 0.03$	-0.007

- The x ranges for SMC98 and COMPASS are like
- The SMC results were obtained with the assumption: $\Delta \bar{u} = \Delta \bar{d} = \Delta s = \Delta \bar{s}$ (SU(3)_f symmetric sea)
- The COMPASS data were not used in the DNS fit.

Summary

- Hadron asymmetries A^{h+}, A^{h-} and A^{h+-h-} are obtained with deuteron COMPASS data (2002 -2004).
- Use of $A^{h^+-h^-}$ and A_1 asymmetries on deuteron target allows to extract $\Delta u_v + \Delta d_v$.
- DNS prediction is in agreement with obtained result.
- $SU(3)_f$ symmetric sea scenario is disfavored with a significance $\sim 2\sigma$.
- To separate $\Delta u \& \Delta d$. we will use the proton data of year 2007.