A Triple-GEM Detector with Pixel Readout for High-Rate Beam Tracking in COMPASS

T. Nagel, A. Austregesilo, F. Haas, B. Ketzer, I. Konorov, M. Krämer, A. Mann, S. Paul

TU München, Physik Dep. E18

10th ICATPP Conference, Como, 8-12 October 2007

Supported by

Maier-Leibnitz-Labor Garching bei München
Outline

1. COMPASS-Experiment

2. PixelGEM Detector

3. Characterisation

4. Conclusion
The COMPASS-Experiment

Overview

COMPASS Muon and Proton Apparatus for Structure and Spectroscopy located at CERN's SPS two-stage magnetic spectrometer taking data since 2002

2 types of beam muons: 4×10^7 s$^{-1}$

hadrons: 2×10^7 s$^{-1}$

energies: 160-190 GeV

Physics Goals

- nucleon spin-structure
- hadron spectroscopy

Tracking

- Silicons, Scint. Fibres
- GEMs, MicroMegas
- MWPCs, Drift Chambers
The COMPASS-Experiment

Overview

- COmmom Muon and Proton Apparatus for Structure and Spectroscopy
- located at CERN’s SPS
- two-stage magnetic spectrometer
- taking data since 2002

Physics Goals
- nucleon spin-structure
- hadron spectroscopy

Tracking
- Silicons, Scint. Fibres
- GEMs, MicroMegas
- MWPCs, Drift Chambers
The COMPASS-Experiment

Overview
- COnmon Muon and Proton Apparatus for Structure and Spectroscopy
- located at CERN’s SPS
- two-stage magnetic spectrometer
- taking data since 2002

2 types of beam
- muons: $4 \cdot 10^7 \, s^{-1}$
- hadrons: $2 \cdot 10^7 \, s^{-1}$
- energies: 160-190 GeV

Physics Goals
- nucleon spin-structure
- hadron spectroscopy

Tracking
- Silicons, Scint. Fibres
- GEMs, MicroMegas
- MWPCs, Drift Chambers
The COMPASS-Experiment

Overview
- COmmom Muon and Proton Apparatus for Structure and Spectroscopy
- located at CERN’s SPS
- two-stage magnetic spectrometer
- taking data since 2002

Physics Goals
- nucleon spin-structure
- hadron spectroscopy

2 types of beam
- muons: $4 \cdot 10^7 \text{s}^{-1}$
- hadrons: $2 \cdot 10^7 \text{s}^{-1}$
- energies: 160-190 GeV
The COMPASS-Experiment

Overview
- **COMPonentMuon and Proton Apparatus** for Structure and Spectroscopy
- located at CERN’s SPS
- two-stage magnetic spectrometer
- taking data since 2002

2 types of beam
- muons: 4×10^7 s$^{-1}$
- hadrons: 2×10^7 s$^{-1}$
- energies: 160-190 GeV

Physics Goals
- nucleon spin-structure
- hadron spectroscopy

Tracking
- Silicons, Scint. Fibres
- GEMs, MicroMegas
- MWPCs, Drift Chambers
Motivation for PixelGEM

Hadron Beam 2008

- intensity up to $2 \cdot 10^7 \text{s}^{-1}$
- flux density $> 10^5 \text{mm}^{-2}\text{s}^{-1}$
- SciFi act as secondary target: $x/X_0 = 1.8 - 2.6\%$
Motivation for PixelGEM

Hadron Beam 2008
- intensity up to $2 \cdot 10^7 \text{s}^{-1}$
- flux density $> 10^5 \text{mm}^{-2}\text{s}^{-1}$
- SciFi act as secondary target: $x/X_0 = 1.8 \sim 2.6\%$

COMPASS GEMs
- $x/X_0 = 0.4\%$
- no gain drop due to space charge \Rightarrow high inherent rate capability
- strip readout \Rightarrow occupancy too high \Rightarrow centres deactivated
Motivation for PixelGEM

Hadron Beam 2008
- intensity up to $2 \cdot 10^7 \text{s}^{-1}$
- flux density $> 10^5 \text{mm}^{-2}\text{s}^{-1}$
- SciFi act as secondary target: $x/X_0 = 1.8 - 2.6\%$

COMPASS GEMs
- $x/X_0 = 0.4\%$
- no gain drop due to space charge \Rightarrow high inherent rate capability
- strip readout \Rightarrow occupancy too high \Rightarrow centres deactivated

Solution: GEM with pixel read-out
Gas Electron Multiplier: avalanche amplification in holes

3-fold staggered design to increase gain and avoid discharges
Read-out Circuit
Read-out Circuit

Read-out: $450 \times 450 \text{ mm}^2$

- 3 conducting layers
 Cu $5 \mu\text{m}$
- 2 intermediate layers
 Kapton $50 \mu\text{m}$
Read-out Circuit

Read-out: $450 \times 450 \text{ mm}^2$
- 3 conducting layers
 - Cu $5 \mu m$
- 2 intermediate layers
 - Kapton $50 \mu m$

Centre: $32 \times 32 \text{ mm}^2$
- 32×32 Pixels
- pitch: 1 mm
Read-out Circuit

Read-out: \(450 \times 450\, \text{mm}^2\)
- 3 conducting layers
 - Cu \(5\, \mu\text{m}\)
- 2 intermediate layers
 - Kapton \(50\, \mu\text{m}\)

Centre: \(32 \times 32\, \text{mm}^2\)
- \(32 \times 32\) Pixels
- pitch: 1 mm

Periphery: \(100 \times 100\, \text{mm}^2\)
- 512 crossed (2D) strips
- equal charge-sharing
- pitch: \(400\, \mu\text{m}\)
GEM Foil

- GEM Foil
 - Foil: 330 x 330 mm
 - Kapton 50 µm
 - Cu cladding: 5 µm or 1 µm
 - Gas circulation holes: diameter 0.5 mm
 - Active Area: 100 x 100 mm²
 - Segmented amplification region
 - Double-conical holes
 - GEM hole diameter: 70 µm
 - Pitch: 140 µm
GEM Foil

Foil: $330 \times 330 \text{ mm}^2$

- Kapton 50 μm
- Cu cladding: 5 μm or 1 μm
- gas circulation holes: diameter 0.5 mm
GEM Foil

Foil: $330 \times 330 \text{ mm}^2$
- Kapton $50 \mu\text{m}$
- Cu cladding: $5 \mu\text{m}$ or $1 \mu\text{m}$
- gas circulation holes: diameter 0.5 mm

Active Area: $100 \times 100 \text{ mm}^2$
- segmented amplification region
- double-conical holes
- GEM hole diameter: $70 \mu\text{m}$
- pitch: $140 \mu\text{m}$
Front-End Electronics

APV card

- analogue APV25 S1 ASIC\(^1\)
- 38.88 MHz sampling frequency
- 128 channels
- 160 samples pipeline:
 up to \(\sim 4 \mu s\) trigger latency

Front-End Electronics

APV card
- analogue APV25 S1 ASIC\(^1\)
- 38.88 MHz sampling frequency
- 128 channels
- 160 samples pipeline: up to $\sim 4 \mu s$ trigger latency

Read-out Scheme
- 16 APV cards per detector
- bus card to 12 bit ADC
- total equiv. noise charge: 1300-1500 electrons

The fully assembled Detector
Material Thickness in $\%_0$ of radiation length X_0

<table>
<thead>
<tr>
<th></th>
<th>centre $[X_0/1000]$</th>
<th>periphery $[X_0/1000]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb Support</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Drift Foil</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3 GEM Foils</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Readout Circuit</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Shielding</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Gas</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Thickness</td>
<td>3.8</td>
<td>7.1</td>
</tr>
</tbody>
</table>

centre: $r < 15$ mm, periphery: $r > 15$ mm

Cu layer thickness 5 μm
Material Thickness in $\%_0$ of radiation length X_0

<table>
<thead>
<tr>
<th>Material</th>
<th>centre $[X_0/1000]$</th>
<th>periphery $[X_0/1000]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb Support</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Drift Foil</td>
<td>0.5 / 0.3</td>
<td>0.5 / 0.3</td>
</tr>
<tr>
<td>3 GEM Foils</td>
<td>2.1 / 0.8</td>
<td>2.1 / 0.8</td>
</tr>
<tr>
<td>Readout Circuit</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Shielding</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Gas</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Thickness</td>
<td>3.8 / 2.2</td>
<td>7.1 / 5.5</td>
</tr>
</tbody>
</table>

centre: $r < 15$ mm, periphery: $r > 15$ mm

Cu layer thickness $5 \mu m / 1 \mu m$
Material Thickness in % of interaction length λ_I

<table>
<thead>
<tr>
<th>Material</th>
<th>Centre $[\lambda_I/1000]$</th>
<th>Periphery $[\lambda_I/1000]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb Support</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Drift Foil</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3 GEM Foils</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Readout Circuit</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Shielding</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gas</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Thickness</td>
<td>0.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

centre: $r < 15 \text{ mm}$, periphery: $r > 15 \text{ mm}$

Cu layer thickness 5 μm
Material Thickness in $\%$ of interaction length λ_I

<table>
<thead>
<tr>
<th>Material</th>
<th>Centre $[\lambda_I/1000]$</th>
<th>Periphery $[\lambda_I/1000]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycomb Support</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Drift Foil</td>
<td>0.1 / 0.1</td>
<td>0.1 / 0.1</td>
</tr>
<tr>
<td>3 GEM Foils</td>
<td>0.4 / 0.2</td>
<td>0.4 / 0.2</td>
</tr>
<tr>
<td>Readout Circuit</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Shielding</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Gas</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Thickness</td>
<td>0.9 / 0.8</td>
<td>2.1 / 2.0</td>
</tr>
</tbody>
</table>

centre: $r < 15$ mm, periphery: $r > 15$ mm

Cu layer thickness 5 μm / 1 μm
Gain-Voltage-Dependency

measured with 55Fe source for 5 μm Cu GEM

selected 3900 V for a gain of ~ 7500
Setup in COMPASS
Beams from SPS

SPS Tunnel

Occupyancy [%]

Low Intensity μ^- Beam
- total flux: $1.1 \cdot 10^6 \text{ s}^{-1}$
- max. density: $2.5 \cdot 10^3 \text{ mm}^{-2} \text{s}^{-1}$

High Intensity μ^- Beam
- total flux: $4.8 \cdot 10^7 \text{ s}^{-1}$
- max. density: $1.2 \cdot 10^5 \text{ mm}^{-2} \text{s}^{-1}$
Crosstalk Suppression

beamspot with crosstalk
Crosstalk Suppression

tag channels with high-amplitude neighbours
after clustering: remove clusters containing mostly tagged pixels
Crosstalk Suppression

- tag channels with high-amplitude neighbours
- after clustering: remove clusters containing mostly tagged pixels
Efficiency Scan

Low Intensity: $\sim 2 \cdot 10^{3} \text{ mm}^{-2} \text{s}^{-1}$

- Efficiency plateau: $\sim 98.5 \%$
- bg prob. per pixel: $\sim 0.1 \%$
- roadwidth used: 0.6 mm

High Intensity: $\sim 1 \cdot 10^{5} \text{ mm}^{-2} \text{s}^{-1}$

- Efficiency plateau: $\sim 95.5 \%$
- bg prob. per pixel: $\sim 2 \%$
- roadwidth used: 1 mm
Efficiency Map

Low Intensity: $\sim 2 \cdot 10^3 \text{ mm}^{-2}\text{s}^{-1}$

Average efficiency: $\sim 98.5\%$

High Intensity: $\sim 1 \cdot 10^5 \text{ mm}^{-2}\text{s}^{-1}$

Average efficiency: $\sim 95.5\%$
Spatial Residuals

Low Intensity: $\sim 2 \cdot 10^3 \text{ mm}^{-2}\text{s}^{-1}$

- Weighted mean: $\sigma_x = 90 \mu m$

High Intensity: $\sim 1 \cdot 10^5 \text{ mm}^{-2}\text{s}^{-1}$

- Weighted mean: $\sigma_x = 135 \mu m$

Black/blue: with/without clustering, Green: Gaussian components
Temporal Residual

Low Intensity: $\sim 2 \cdot 10^3 \text{ mm}^{-2} \text{s}^{-1}$

$$\text{rms} = 9.9 \text{ ns}$$
Conclusion and Outlook

GEM with pixel read-out
radiation-hard in-beam tracker
stable operation in muon beams up to $1.2 \cdot 10^5$ mm$^{-2}$s$^{-1}$

extremely thin: $x/X_0 = 0.2\%$ and $\lambda/\lambda_I = 0.07\%$

Outlook
ongoing work on analysis/reconstruction
deployment of 5 PixelGEM detectors in COMPASS in 2007/2008

Acknowledgements
Rui de Oliveira (CERN TS-DEM-PMT)
Christian Joram, Eric David, Miranda van Stenis (CERN PH-DT2)
Ian McGill (CERN PH-DT2)
Workshops of CERN and TU München
Conclusion

- GEM with pixel read-out
- radiation-hard in-beam tracker
- stable operation in muon beams up to $1.2 \cdot 10^5 \text{ mm}^{-2} \text{s}^{-1}$
- extremely thin: $x/X_0 = 0.2 \%$ and $\lambda/\lambda_I = 0.07 \%$
Conclusion and Outlook

Conclusion
- GEM with pixel read-out
- Radiation-hard in-beam tracker
- Stable operation in muon beams up to $1.2 \cdot 10^5 \text{ mm}^{-2} \text{s}^{-1}$
- Extremely thin: $x/X_0 = 0.2\%$ and $\lambda/\lambda_I = 0.07\%$

Outlook
- Ongoing work on analysis/reconstruction
- Deployment of 5 PixelGEM detectors in COMPASS in 2007/2008
Conclusion and Outlook

Conclusion

- GEM with pixel read-out
- radiation-hard in-beam tracker
- stable operation in muon beams up to $1.2 \cdot 10^5 \text{ mm}^{-2} \text{s}^{-1}$
- extremely thin: $x/X_0 = 0.2\%$ and $\lambda/\lambda_I = 0.07\%$

Outlook

- ongoing work on analysis/reconstruction
- deployment of 5 PixelGEM detectors in COMPASS in 2007/2008

Acknowledgements

- Rui de Oliveira (CERN TS-DEM-PMT)
- Christian Joram, Eric David, Miranda van Stenis (CERN PH-DT2)
- Ian McGill (CERN PH-DT2)
- Workshops of CERN and TU München
Efficiency: Roadwidth Scan

Low Intensity: $\sim 5 \cdot 10^3 \text{ mm}^{-2}\text{s}^{-1}$

High Intensity: $\sim 2 \cdot 10^5 \text{ mm}^{-2}\text{s}^{-1}$
Crosstalk: Design of Read-out Circuit

first version
Crosstalk: Design of Read-out Circuit

first version

improved layout
Readout Chain
Production: Gluing GEM foil onto Spacer Grid
Spatial/Temporal Resolution Strip-GEMs

Spatial resolution
- Test beam/low intensity:
 \[\langle \sigma_x \rangle \approx 50 \mu m \]
- Standard physics run: \(4 \times 10^7 \mu^+ / s \):
 \[\langle \sigma_x \rangle \approx 70 \mu m \]

Time resolution
- 3 analog samples per trigger
- Rising edge of signal
- Reconstruct \(t_0 \) from known pulse shape

\[\langle \sigma_t \rangle \approx 12 \text{ns} \]

[B. Ketzer et al., NIM A535, 314 (2004)]
Efficencies Strip-GEMs

Low intensity beam: \(5 \cdot 10^6 \mu^+/s\)
- All detectors reach plateau (\(\varepsilon > 98\%\))
- Gain \(\sim 8000\)
- SNR \(\sim 18\)
- Losses due to spacer grid: 1.2-1.5%

Standard physics beam: \(4 \cdot 10^7 \mu^+/s\)
- Background correction
 \[\varepsilon_{\text{app}} = \varepsilon + (1 - \varepsilon) \cdot b\]
- Single plane: \(\langle \varepsilon_{1D} \rangle = 97.2\%\)
- 2D (space point): \(\langle \varepsilon_{2D} \rangle = 95.6\%\)

[B. Ketzer et al., Nucl. Phys. B 125C, 368 (2003)]

[B. Ketzer et al., NIM A535, 314 (2004)]