Gluon and Spin

- Introduction
- ΔG from scaling violations
- $\Delta G/G$ from hadron production
 - Open charm
 - Hadron pairs
 - Single hadrons
- $\triangle G$ in pp RHIC

G. Mallot CERN/COMPASS

How it all began

All started 1987 with the discovery by the EMC

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

$$\Delta\Sigma = 0.12 \pm 0.17$$
 $\Delta s = -0.19 \pm 0.06$

- Ellis-Jaffe sum rule violated
- Quark spin contribute little to nucleon spin
- Where is the nucleon spin?

Theory Input 1988

Spin Content of the Pr

F. E. Close s Department. University of Tennessee. Kr

and PRI

CHIRAL SYMMETRY AND THE SFIN OF THE PROTON ★

Stanley J. BRODSKY*. John ELLIS a.bl and Marek KARLINER*

- Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94308, USA
- b CERN, CH-1211 Genera 23, Switzerland

PLB 206 (1988) 309

E2-88-287

A crisis in the parton model: where, oh where is the proton's spin?

E. Leader ¹ and M. Auselmino² Birkbeck College, University of Loaden, Landon, UR Dipartiments of Fisics Teorics, Université di Terino, L-19125 Ferino, Italy

Received 18 March 1988

ZPC 41 (1988) 239

A.V. Efremov, O.V. Teryaev*

SPIN STRUCTURE OF THE NUCLEON AND TRIANGLE ANOMALY

THE ANOMALOUS GLUON CONTRIBUTION TO POLARIZED LEPTOPRODUCTION

G. ALTARELLI and G.G. ROSS * CERN. CH-1211 Genera 2A. Switzerland

Received 29 June 1988

PLB 212 (1988) 391

Considered Options

- Small-x extrapolation? (CR)
- Skyrmions: $\Delta G = 0$ possibly (BEK)
- Bjorken sum rule broken? (only proton data at that time)
 Measurement wrong? (LA)
- Large $\Delta G \sim 2-3$ at EMC Q^2 could mask quark spin via axial anomaly (ET, AR)

requires fine tuning of cancelation of ΔG and orbital angular momentum

How to measure $\Delta G/G$

First step: Is ΔG indeed in the order 2-3 \hbar ?

- Scaling violations in g_1 , however no polarised ep collider!
- Longitudinal double-spin asymmetries in hadron production via photon-gluon fusion (Hendlmeier)

 LDSA in pp collisions at RHIC (Aidala)

$F_2(x,Q^2)$

$g_1(x,Q^2)$

NLO $x=0.008 (\times 2048)$ x=0.015 (×1024) x=0.025 (×512) x=0.035 (×256) 10 x=0.05 (×128) $x=0.08 (\times 64)$ $x=0.125 (\times 32)$ 10 $x=0.35 (\times 4)$ $x=0.5 (\times 2)$ E155 E143 SMC **EMC** HERMES 10^{2} $Q^2 (GeV^2)$ 10

Int. Workshop on Structure and Spectroscopy

Freiburg March 2007

G. Mallot/CERN

NLO QCD fits

- Several groups performing World Data fits
- Example AAC, new fit 2006
- Still large uncertainty in ΔG , even sign not determined
- Extra difficulties in polarized case
 - No positivity condition
 - No momentum sum rule

Int. Workshop on Structure and Spectroscopy

Freiburg March 2007

G. Mallot/CERN

New COMPASS A1d data

COMPASS NLO QCD fit

- New g_1^d data + world data
- $\triangle G > 0$ and $\triangle G < 0$
- $|\Delta G|' 0.2-0.3$
- $a_0 = 0.33\S0.03\S0.05$
- $\Delta s = -0.08\S0.01\S0.02$

cf.: New Hermes Fit: $a_0 = 0.330 \pm 0.011 \pm 0.025$ $\pm 0.028 \text{ (evol)}$ $\Delta s = -0.085 \pm 0.013 \pm 0.08 \pm 0.09$

G. Mallot/CERN

COMPASS QCD fit

- Not yet included in fits: final Hermes g₁^d
- · Uncertainty due to parametrisation not included

χ^2 as Function of ΔG

- Two distinct solutions
- $\Delta G > 0$ preferred
- $\Delta G < 0$ preferred by small-x points

QCD fit

Photon-gluon fusion (PGF)

Gluon polarisation is measurable in PGF

$$A_{\parallel} = R_{pgf} \langle \hat{\mathbf{a}}_{pgf} \rangle \frac{\Delta G}{G}$$

- measure A_{\parallel}
- calculate R_{pgf} and $\langle \hat{a}_{pgf} \rangle$

using Monte Carlo

Hadron production

- LO analysis of hadron-pair asymmetries:
 - open charm: single D meson
 cleanest process wrt physics background
 - high- p_T hadron pairs with $Q^2 > 1 \text{ GeV}^2$
 - high- p_T hadron pairs with $Q^2 < 1 \text{ GeV}^2$

AROMA, RAPGAP

LEPTO PYTHIA

- NLO (photo production)
 - open charm
 - single incl. high- p_T hadron
 - hadron pairs: LO done,
 - NLO underway

Bojak, Stratmann Jaeger. Stratmann, Vogelsang **Hendlmeier**, Stratmann, Schäfer

All analyses up to now in LO (plus parton showers)

Open Charm: D's from D*s

 $D^* \rightarrow D \pi_s \rightarrow K \pi \pi_s$ slow pion required

2002-2004

Open charm: MC

- analysis uses event a_{LL} weighting,
- a_{LL} estimated with NN from event kinematics
- indispensable due to large variation of a_{LL}
- good correlation of 0.82 between generated and reconstructed a₁₁

Light hadron production

Ratios for processes for $Q^2 < 1$

Example: k_T tuning

DEFAULT -0.3 -0.4 -0.5 0.2 0.4 -0.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 K_T [GeV/c]

photon

- · systematic error:
 - determined using 15 independent MC simulations
 - exploring the parameter space
 - in k_T of nucleon and photon
 - fragmentation functions
 - parton shower on/off,
 - · renormalisation scale

Resolved photons

- More than 50%, however assuming a min and max scenario, shows little difference.
- Probing photon at large x, where photon PDF rather well determined

Glück, Reya, Sieg Freiburg March 2007

Data versus MC

 excellent to good agreement for all kinematics variables

Freiburg March 2007

Gluon polarisation

high-pT pairs; $Q^2 > 1 \text{GeV}^2$:

$$\frac{\Delta G}{G} = 0.06 \pm 0.31 \text{(stat.)} \pm 0.06 \text{(syst.)} \qquad \langle x_g \rangle = 0.13$$

high-pT pairs; $Q^2 < 1$ GeV²:

$$\frac{\Delta G}{G} = 0.016 \pm 0.058 (\text{stat.}) \pm 0.055 (\text{syst.})$$
 $2002-2004$ $\langle x_g \rangle = 0.085$ $\langle \mu^2 \rangle = 3 \text{ GeV}^2$

Open charm:

$$\frac{\Delta G}{G}$$
 = -0.57 ± 0.41(stat.) ± 0.17(syst.)
 $\langle x_g \rangle$ = 0.15 $\langle \mu^2 \rangle$ = 13 GeV²

$\Delta G/G$ from high-p_T pairs

GRSV-max strongy disfavoured

COMPASS QCD fit

· Note NLO fits, LO data

New Hermes analysis

Single inclusive hadrons

P. Liebing at spin 2006

Int. Workshop on Structure and Spectroscopy

Freiburg March 2007

G. Mallot/CERN

Can we learn more about x?

here Lepto and Q2>1

Int. Workshop on Structure and Spectroscopy

Freiburg March 2007

G. Mallot/CERN

Splitting in x_g bins?

Compass

- Splitting of high- p_T , $Q^2<1$ data in 3 x_g bins under study
- Optimizing correlation of rec. and `true' x_q (NN)
- More significant with 2006 data

RHIC: polarised pp

pp: NLO Calculations

In much better shape:

Reaction	Dom. partonic process	probes	LO Feynman diagram
$\vec{p}\vec{p} \to \pi + X$	$ec{g}ec{g} ightarrow gg$	Δg	greek
[61, 62]	$\vec{q}\vec{g} o qg$		3
$\vec{p}\vec{p} \to \text{jet(s)} + X$ [71, 72]	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
$\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$	$ec{q} ec{g} ightarrow \gamma q \ ec{q} ec{g} ightarrow \gamma q$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	ع
$\vec{p}\vec{p} \to \gamma\gamma + X$ [67, 73, 74, 75, 76]	$ec{q} \overline{ec{q}} o \gamma \gamma$	$\Delta q, \Delta \bar{q}$	
$\vec{p}\vec{p} \to DX, BX$ [77]	$ec{g}ec{g} ightarrow car{c}, bar{b}$	Δg	zore <

Jäger, Schäfer, Stratmann, Vogelsang; de Florian

Jäger,Stratmann,Vogelsang; Signer et al.

Gordon, Vogelsang; Contogouris et al.; Gordon, Coriano

Bojak, Stratmann

Summary by Stratmann, DIS2006

π^0 production at RHIC

· Phenix

Direct photons

 good agreement of calc. and data at collider energies

Towards a global analysis

W. Vogelsang, M. Stratmann (DIS2006, work in progress)

Freiburg March 2007

Slide from Hirai DIS2006

Δg from π^0 production (RUN05)

- 1^{st} moment Δg
 - 0.31 ± 0.32 (DIS+ π^0)
 - -0.47 ± 1.08 (DIS only)
- Significant reduction of the Δg uncertainty
- · Sign problem
 - gg process dominates
 - $\Delta \sigma \propto [\Delta g(x)]^2$
 - Positive or negative Δg ?
 - $\chi^2_{\pi 0}$: 11.18(Δg >0) vs. 11.05 (Δg <0) (8 data points)
 - Consistent results
 - 1^{st} moment $(0.1 < x_{Bj} < 1)$
 - $\Delta g > 0$: 0.30 ± 0.30
 - Δq <0: 0.32 ± 0.42
 - Large-x is positive
 Int. Workshop on Structure and Spectroscopy

Inclusive jets at STAR

from Kiryluk, DIS2006

Summary

- all results indicate ΔG small compared to anomaly inspired hypotheses
- sign still undefined
- ΔG still could carry most of the nucleon's spin
- need data on x_q -dependence to pin down the shape
- need to include COMPASS and HERMES high-pT data in starting global analyses (NLO calculations)
- looking forward to 500 GeV/c at RHIC