Gluon polarisation in the nucleon from COMPASS

Krzysztof Kurek The Andrzej Sołtan Institute for Nuclear Studies, Warsaw,Poland

on behalf of the COMPASS Collaboration

DIFFRACTION 2006 International Workshop on Diffraction in High-Energy Physics 5-10 September 2006 Adamantas, Milos, Greece

COmmon Muon Proton Apparatus for Structure and Spectroscopy COMPASS

Bielefeld,Bochum,Bonn,Burdwan/Calculta,CERN,Dubna,Erlangen, Freiburg,Lisbon,Mainz,Moscow,Munich,Nagoya,Prague,Protvino, Saclay,Tel Aviv,Turin,Trieste,Warsaw, ~240 physicists

Muon beam program: gluon polarisation,

polarised quark distributions, polarised fragmentation functions, transversity, Lambda polarisation, vector meson production, DVCS (future) Hadron beam program: Primakoff reaction, glueballs, charmed baryons, exotic charm states.

- longitudinally polarised muon beam
- longitudinally or transversely polarised deuteron (⁶LiD) target
- momentum and calorimetry measurement particle identification

COMPASS

Iuminosity:~5 · 10³² cm⁻² s⁻¹beam intensity:2·10⁸ μ+/spill (4.8s/16.2s)beam momentum:160 GeV/cbeam polarization:~76 %target polarization:~50 %

LHC

The COMPASS Spectrometer

Diffraction 2006

The COMPASS polarised target

Content

Motivation and Nucleon spin decomposition.
 Inclusive asymmetry A^d₁, structure function g^d₁ and QCD analysis for Q²> 1 GeV² (fits).

Gluon polarisation $\frac{\Delta G}{G}$

Two methods of accessing directly $\frac{\Delta G}{G}$ in Compass Open charm channel method and results. High p_T hadron pairs method:

- Results for events with low Q².
- Results for events with $Q^2 > 1 \text{ GeV}^2$.

Conclusions.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

A very small fraction of the proton spin is carried by the spin of the quarks - put the naive but well-accepted quark model into serious questioning! (EMC (1988): a₀ = ΔΣ = 12 ±9 ±14% while ≈ 60% expected, confirmed by SMC, SLAC and Hermes : ΔΣ= 20 - 30%)
 The possible role of axial anomaly: measured quantity a₀ = ΔΣ - (3α_S/2π) ΔG

EMC – 1988 – 18 years ago: An impressive follow-ups: SLAC E142,E143,E155,E156, SMC, HERMES, JLAB spin physics, COMPASS, RHIC Spin, JLAB12 GeV Upgrade

 $g_1(x) = \frac{1}{2} \sum e_q^2 \Delta q(x)$ and $\Delta q(x) = q^+(x) - q^-(x);$

Well defined in terms of quark helicity densities but: q+ ~ Ψ (1+ γ_5) $\gamma_{\mu}\Psi$, q- ~ Ψ (1- γ_5) $\gamma_{\mu}\Psi \Rightarrow \Delta q(x) \sim \Psi \gamma_5 \gamma_{\mu}\Psi$

> Axial vector current is not conserved due to Adler-Bell-Jackiw anomaly ;

In a consequence:measured quantity $a_0 = \Delta \Sigma - (3\alpha_S/2\pi) \Delta G$. where $\Delta \Sigma = \Delta u + \Delta d + \Delta s$, $\Delta q = \int \Delta q(x) dx$ and $\Delta G = \int \Delta G(x) dx$ is a gluon polarization contribution.

$$\begin{split} &\Gamma_{1} = \int g_{1}(x) dx \\ &\Gamma_{1}^{p} - \Gamma_{1}^{n} = \frac{g_{A}}{6g_{V}} C_{1}^{NS} \qquad (\text{Bjorken sum rule}) \\ &\Gamma_{1}^{p,n} = \left(\pm a_{3} + \frac{a_{8}}{\sqrt{3}} \right) \frac{C_{1}^{NS}}{12} + a_{0} \frac{C_{1}^{S}}{9} \qquad (\text{Ellis-Jaffe sum rule}) \\ &a_{3}, a_{8}, g_{A,V} - \text{hyperon } \beta \text{ decay} + \text{SU}_{f}(3); \\ &C_{1}^{S,NS} - \text{calculable in QCD} \end{split}$$

But - due to \triangle anomaly - $a_0 = \Delta \Sigma - (3\alpha_S/2\pi) \Delta G$ and If $\Delta G \approx 2.5 \rightarrow \Delta \Sigma \approx 0.6 \rightarrow can$ "solve the spin crisis" \downarrow Need direct measurement of ΔG

Inclusive asymmetry A₁^d and structure function g₁^d

1502

Krzysztof Kurek Gluon polarisation in the nucleon from COMPASS

$$A^{\mu d} = A_{||} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = D \left(A_{1}^{d} + \eta A_{2}^{d}\right)$$
$$|\eta A_{2}^{d,p,n}| \ll |A_{1}^{d,p,n}|,$$
$$A_{1}^{p,n} = A^{\gamma N} = \frac{\sigma^{1/2} - \sigma^{3/2}}{\sigma^{1/2} + \sigma^{3/2}} \quad \text{for nucleon}$$
$$A_{1}^{d} = A^{\gamma d} = \frac{\sigma^{0} - \sigma^{2}}{\sigma^{0} + \sigma^{2}} \quad \text{for deuteron}$$

$$\begin{array}{l} A_{meas} \sim A^{\mu d} \sim A_1^d \ ; \\ \text{Measurement of } A_1 \ \text{gives access to } g_1 \ \text{structure function} \\ g_1^d = \frac{1}{2} \left(g_1^p + g_1^n \right) \left(1 - \frac{3}{2} \omega_d \right) \simeq A_1^d \ F_1^d = A_1^d \frac{F_2^d}{2x(1+R)} \end{array}$$

- A^d₁ and g^d₁ for small Q² (Q²<1 GeV²): physics at small x, parton saturation, non-perturbative models (Regge,VDM) poorly known (only SMC data)
- A_1^d and g_1^d for high Q² (Q²>1 GeV²): QCD analysis possible: ΔG estimation

- A^d₁ and g^d₁ for small Q² (Q²<1 GeV²): physics at small x, parton saturation, non-perturbative models (Regge,VDM) poorly known (only SMC data)
- A_1^d and g_1^d for high Q^2 ($Q^2 > 1$ GeV²): QCD analysis possible: ΔG estimation

Unfortunately - Q² and x are strongly correlated for small Q² in COMPASS (fixed target)

blue points – Compass 2002-2003 data for $Q^2 < 1 \text{ GeV}^2$ 10-20 times lower statistical errors compared to SMC

 g_1^d - Compass 2002-2003 data for Q² < 1 GeV²

 F_2^d taken from SMC param. R depends on x: x>0.12 SLAC (Phys.Lett.B250(1990)193, B52(1999)194) 0.003<x<0.12 NMC (unpublished) x<0.003 ZEUS (Eur.Phys.JC7(1999)609, σ_L , σ_T cross sections param.)

 A_1^d - Compass 2002-2004 data for Q² > 1 GeV²

~90 mln events (60 inclusive ones), Q² depends on x bins

Diffraction 2006

Krzysztof Kurek Gluon polarisation in the nucleon from COMPASS

A^a₁ - Compass 2002-2004 data for Q² > 1 GeV² For x<0.03: statistical errors reduced by factor 4; no tendency toward negative values

Diffraction 2006

Krzysztof Kurek Gluon polarisation in the nucleon from COMPASS

 g_1^d - Compass 2002-2004 data for Q² > 1 GeV²

$$g_1^d = g_1^N (1 - \frac{3}{2}\omega_d) = \frac{F_2^d}{2x(1+R)} A_1^d$$

 g_1^a - Compass 2002-2004 data for Q² > 1 GeV²

QCD fits

$$\begin{aligned} & \text{Measured structure function } g_{1}^{p,n,d} \text{ (different x and } Q^{2}) \\ & g_{1}(x,Q^{2}) = \frac{1}{2} \langle e^{2} \rangle \Big[C_{q}^{s} \otimes \Delta \Sigma^{NS} + C_{q}^{NS} \otimes \Delta q^{NS} + 2n_{f}C_{G} \otimes \Delta G \Big] \\ & = \text{DGLAP equations:} \\ & t = \log \left(\frac{Q^{2}}{\Lambda^{2}} \right) \\ & = \frac{d}{dt} \left(\Delta \Sigma \\ \Delta G \right) = \frac{\alpha_{s}(t)}{2\pi} \left(\frac{P_{qq}^{s}}{2\pi} \frac{2n_{f}P_{qG}^{s}}{P_{Gq}^{s}} \right) \otimes \left(\frac{\Delta \Sigma}{\Delta G} \right) \\ & = \text{Initial parametrization:} \\ & x \text{ dependence at fixed } Q^{2} \end{aligned}$$

$$\begin{aligned} & \text{Minimization routine} \end{aligned} \qquad \begin{aligned} \chi^{2} = \sum_{i=1}^{N} \frac{\left[\frac{g_{1}^{calc}(x,Q^{2}) - g_{1}^{exp}(x,Q^{2}) \right]^{2}}{\left[\sigma_{stat}^{exp}(x,Q^{2}) \right]^{2}} \end{aligned}$$

QCD fits

Two different codes in NLO MS scheme used:

- grid in (Q²,x) space (Phys.Rev.D58(1998)112002)

- Mellin transform + moments space (Phys.Rev.D70(2004)074032) World data fit: 9 experiments, 230 points Two solutions describe data equally well: $\Delta G > 0$ and $\Delta G < 0$, Q²=3 GeV²,

$$g_1(x,Q_0^2) = g_1(x,Q_i^2) + \left[g_1^{fit}(x,Q_0^2) - g_1^{fit}(x,Q_i^2)\right]$$

QCD fits

Comparison of fits - disagreement of data with previous QCD fits (LSS05,BB,GRSV)

Direct measurements of $\Delta G/G$

Direct measurements of $\Delta G/G$

Photon Gluon Fusion (PGF) probes gluons

$$A_{\parallel} = R_{PGF} a_{PGF}^{LL} \frac{\Delta G}{G} + A_{Bkg}$$

Open charm "golden channel"
 no background asymmetry, less MC dependent.
 Small statistics, NLO corrections can be important
 2 high p_T hadrons (p_T > 0.7GeV, then selection on Σp_T²)
 Large statistics
 physical background: "model" (MC) dependent, requires very good description of data by MC.

Direct measurements of $\Delta G/G$

2 high p_T hadrons:

Low Q² analysis (Q²<1GeV²): perturbative scale fixed by p_T, complicated physical background e.g. resolved γ,low p_T
 High Q² analysis (Q²>1GeV²): scale Q², physical background better controlled in the frame of pQCD.

$$A_{LL} = \frac{S}{S+B} a_{LL} \frac{\Delta G}{G}(x_g) \qquad Scale: \langle Q^2 \rangle \approx 13 \text{ GeV}^2$$
$$\sim 4^* \text{ m}_c^2$$
$$D^0 \rightarrow \text{K+} \pi \text{ (untagged)} \qquad D^* \rightarrow D^0 + \pi \rightarrow \text{K+} \pi + \pi$$

$$A_{LL} = \frac{S}{S+B} \, a_{LL} \, \frac{\Delta G}{G}(x_g)$$

*a*_{LL} – calculated with help of MC and parametrized by measured quantities (Neural Network used)

$$D^0 + D^*$$
 result 2002 – 2004:

The studies on the systematical uncertainty are ongoing

Krzysztof Kurek Gluon polarisation in the nucleon from COMPASS

$\Delta G/G$ from 2 high p_T hadrons

Low Q²: Q² < 1 GeV²

$$A_{LL}/D = R_{pgf} \Delta G/G a_{LL}^{pgf}$$

$$+ R_{qcdc} \Delta q/q a_{LL}^{qcdc}$$

$$\uparrow^{*} g \rightarrow q\bar{q} (PGF)$$

$$30\%$$

$$\uparrow^{*} q \rightarrow qg$$

$$gg \rightarrow gg$$

$$gg \rightarrow gg$$

$$gg \rightarrow gg$$

$$gg \rightarrow gg$$

$$h R_{qg} \Delta G/G a_{LL}^{qg} (\Delta q/q)^{\gamma}$$

$$h M_{qg} \Delta G/G a_{LL}^{qg} (\Delta q/q)^{\gamma}$$

$$h M_{qg} \Delta G/G a_{LL}^{qg} (\Delta q/q)^{\gamma}$$

MC event generator **PYTHIA** is used for low Q² analysis

 \rightarrow Adds a limited uncertainty to the estimation of (Δ G/G)(x_g) Resolved photon asymmetry

$$(a) x_g = 0.085^{+0.071}_{-0.035}$$

Diffraction 2006

2002-2003 published: PLB 633 (2006) 25-32

Statistics smaller than in low Q² analysis (10%)
 Background better controlled – pQCD (QCD-C, LP)
 LEPTO MC generator has been used for data description (tunning similar to SMC)

$$\Sigma p_T^2 > 2.5 \text{ GeV}^2 \text{ used.}$$

Preliminary 2002-2003 data result:

$$\frac{\Delta G}{G} = 0.06 \pm 0.31 (\text{stat.}) \pm 0.06 (\text{syst.}) @ x_g = 0.13 \pm 0.08$$

 Analysis is ongoing; 2002-2004 results expected soon
 Scale is determined by Q² and – in contrast to low Q² analysis – the cut Σp_T² > 2.5 GeV² can be released to smaller value to optimize "working point"
 (question: higher fraction R_{PGF} and small statistics or lower fraction and higher statistics?)

Neural Network is tested to improve selection of PGF subprocess and optimize "working point". The significant improvement is expected.

Comment

MC based high- p_T LO analysis often criticized but:

- NLO corrections partially simulated via so-called parton shower
- Part of the NLO effect taken into account via modification of fragmentation function (internal k_T)

NLO fit:

de Florian, Navarro, Sassot, Jiang; Compass results not taken in the fit!

Diffraction 2006

Results for $\Delta G/G$ - summary

Diffraction 2006

Results for $\Delta G/G$ - summary

Diffraction 2006

Outlook

More results soon available with 2004 data for $Q^2 > 1$ GeV² high p_T events.

For the future:

Optimization of event selection with a neural network, Bins in x_g (requires improvement of x_g reconstruction), NLO + resolved γ in open charm analysis.

 2006 data with new COMPASS magnet (larger x_g)
 Expected precision with 2006 data (stat.error): open charm - 0.28, high p_T Q²>1 GeV²: 0.14, high p_T Q²<1 GeV²: 0.045.

Summary

- New measurements of A_1^d , g_1^d have been presented.
- Good agreement with results from previous experiments in the region of middle and high x.
- Improvement in statistical precision factor 4 for x<0.03.</p>
- No tendency toward negative values at x<0.03.</p>

Disagreement of data with previous QCD fits (small x)
 Existing QCD parametrization need to be revised.

Summary

- New measurements of $\Delta G/G$ have been presented.
- Small ΔG is preferred or $\Delta G(x_g)$ has a node around 0.1.
- Ellis-Jaffe sum rule seems to be violated if large ΔG is excluded (axial anomaly).

ΔG ≈ 0.4 not excluded and scenario when L is small still possible.
 ΔG ≈ 0 indicates the important role of angular orbital momentum in nucleon spin decomposition described

in the frame of parton model and pQCD.

Venus de Milo

Spare 1 – QCD fit

Spare 2 – parameters of QCD fit

Quark polarization η_{Σ}

- Well determined by data (proportional to the $\int_0^1 g_1^d(x, Q^2) dx$)
- No difference between results of two QCD-fit programs and the difference for two solutions (η_G > 0 and < 0) is also very small

$$\begin{array}{c|c} \eta_G > 0 & \eta_G < 0 \\ \eta_\Sigma & 0.28 \pm 0.01 & 0.32 \pm 0.01 \end{array} \Rightarrow \qquad \hline \eta_\Sigma = 0.30 \pm 0.01(stat) \pm 0.02(evol) \end{array}$$

Gluon polarization η_G

- Indirect determination (via evolution questions)
- Solutions with $\eta_G > 0$: $\eta_G^{prog \, 1} = 0.26 \stackrel{+}{_{-}0.06}_{-0.06}, \, \eta_G^{prog \, 2} = 0.19 \stackrel{+}{_{-}0.01}_{-0.10}$
- Solutions with $\eta_G < 0$: $\eta_G^{prog \, 1} = -0.31 \stackrel{+ \ 0.1}{_{- \ 0.1}}, \eta_G^{prog \, 2} = -0.18 \stackrel{+ \ 0.04}{_{- \ 0.03}}$

 $|\eta_G|\simeq 0.2-0.3$

Spare 3 – parameters of QCD fit

Quark polarization with COMPASS data only

• The first moment of g_1^d at $Q^2 = 3 \text{ GeV}^2$:

 $\Gamma_1^N = \int_0^1 g_1^N(x, Q^2) dx = 0.0502 \pm 0.0028(stat) \pm 0.0020(evol) \pm 0.0051(syst)$

• a_0 can be extracted from the first moment of g_1^N

$$\Gamma_1^N(Q^2)\Big|_{NLO} = \frac{1}{9} \left(1 - \frac{\alpha_s(Q^2)}{\pi} + \mathcal{O}(\alpha_s^2) \right) \\ \times \left(a_0(Q^2) + \frac{1}{4}a_8 \right)$$

• From hyperon β decays assuming $SU(3)_f$:

$$a_8 = 0.585 \pm 0.025$$

 Contribution from unmeasured x-range is ≈4%

• Quark polarization at $Q^2 = 3 \,\mathrm{GeV}^2$:

 $\begin{array}{rcl} a_0 & = & 0.35 \pm 0.03(stat) \pm 0.05(syst) \\ \eta_{\Sigma} & = & 0.30 \pm 0.01(stat) \pm 0.02(evol) \end{array}$

Spare 4 – data taking

Physics topics for longitudinal data

- inclusive asymmetries
- semi-inclusive asymmetries
- open charm production
- high $p_{\rm T}$ hadrons pairs
- Λ polarisation
- exclusive ρ production
- 20% of time for transverse data taking

	2002	2003	2004
Beam Time	106d	90d	110d
Preparation	30d	7d	3d
Integrated luminosity $/ \text{ fb}^{-1}$	1	1.2	~ 2.4

Spare 5 – R for $Q^2 < 1 \text{ GeV}^2$

2.1 The R function

The R function which was previously used by the SMC, and it is commonly used by COMPASS [2] is composed of three different parameterizations in different regions of x (see [4] for references and explanations):

- SLAC, x > 0.12,
- NMC, 0.003 < x < 0.12,
- ZEUS, x < 0.003.

Values of R have large discontinuities close to the validity limits of the parametrizations, Fig.4. To partially overcome the problem, a new SLAC parametrization was used for $Q^2 > 0.5 \text{ GeV}^2$, [5]. Below the $Q^2 = 0.5 \text{ GeV}^2$ the following formula was employed:

$$R(Q^2 < 0.5, x) = R_{SLAC}(0.5, x) \times \beta(1 - exp(-Q^2/\alpha))$$
(1)

where $\alpha = 0.2712$, $\beta = 1/(1 - exp(-0.5/\alpha)) = 1.1880$. At $Q^2 = 0.5 \text{ GeV}^2$ the function and its first derivative are continuous. In the $Q^2=0$ limit: $R \sim Q^2$, which is expected from the current conservation. The new Rparametrization is shown in the right plot of Fig.4. The error on R, δR , above $Q^2 = 0.5 \text{ GeV}^2$ was taken from [5] and below $Q^2 = 0.5 \text{ GeV}^2$ was set to $\delta R = 0.2$. For that value and for the simplest assumption about R for $Q^2 < 0.5 \text{ GeV}^2$ and any x, e.g. R = 0.2, there is an approximate agreement (within 1σ) with the value at the photo-production limit where R=0 and with measurements at higher Q^2 from HERA, where $R \approx 0.4$.