Transversity results from HERMES and COMPASS

Eva Kabuß

University of Mainz

Transversity Spin Workshop BNL 6.6.2006

COMPASS results

prepared by Rainer Joosten

Transverse Spin Physics

<u>3 possible quark polarimeters suggested using SIDIS:</u>

> Azimuthal distribution of single (leading) hadrons

paper on 2002 data published Phys. Rev. Lett. 94, 202002 (2005)

>Azimuthal dependence of the plane containing hadron pairs

> Measurement of transverse polarization of baryons (e.g. Λ hyperon)

Transversity Measurements at COMPASS

Transversity Data Sample

<u>Target:</u> ⁶LiD (deuterium)

- 2002: 12+7 days of data taking
 - 1.8×10⁹ raw events
- 2003: 14 days of data taking trigger upgrade to gain on large x_{Bj} & large Q² events !
 - 2002 data doubled
- <u>2004</u>: 14 days of data taking DAQ improved and online filter added
 - ~ 2003 data doubled

Transversity Measurements at COMPASS

Single hadron production

<u>Two possible azimuthal asymmetries:</u>

(a) fragmentation of transversely polarized quarks with finite transverse momentum to unpolarized hadrons

 \rightarrow Collins effect --- (access to transversity)

(b) modulation of transverse momentum of unpolarized quarks in the transverse polarized nucleon

 \rightarrow Sivers effect

f dilution factor; P target polarization; $D_{NN} = (1-y)/(1-y+y^2/2)$ Depolarization factor Transversity Measurements at COMPASS 5

Collins Asymmetries

A. V. Efremov, K. Goeke and P. Schweitzer, Collins on Proton and Deuterium (hep-ph/0603054)

OMPA

Sivers Asymmetries

M. Anselmino et al. Sivers on Deuterium (hep-ph/0507181)

OMPA

Conclusion (1)

- A first measurement of Collins and Sivers asymmetries has been performed with a polarized deuteron (⁶LiD) target.
- The measured asymmetries are very small and compatible with zero within the current statistical errors.
- Investigations of systematic effects prove them to be small compared to the statistical error
- Both COMPASS (deuteron) and HERMES (proton) data can be described by the same model, implying for deuteron a cancellation between protons and neutrons. Existing phenomenological models are in a good agreement with COMPASS and HERMES data;

Transverse Spin Physics

<u>3 possible quark polarimeters suggested using SIDIS:</u>

>Azimuthal distribution of single (leading) hadrons

>Azimuthal dependence of the plane containing hadron pairs

First results on the effect proposed by e.g. Collins et al., Nucl. Phys. B 420 (1994) 565. Jaffe et al., Rev. Lett. 80 (1998) 1166.

Measurement of transverse polarization of baryons
 (e.g. Λ hyperon)

Transversity Measurements at COMPASS

Selection of Hadron Pairs

Select all combinations of positive (h_1) and negative (h_2) hadrons with:

Presently no $\pi/K/p$ separation by RICH

OMPA

2-Hadron Asymmetries

OMPA

2-Hadron Asymmetries (z ordered pairs)

Conclusion (2)

- First results of the analysis of our transverse target data concerning two hadron asymmetries were shown.
- The observed asymmetries are small.
- Systematics checks performed on the data show, that systematic effects are smaller than the statistical error.

 $\Delta_{\tau}q(x)$ from Λ polarization

Introducing the chiral-odd fragmentation function $\Delta_T D_{\Lambda/q}(z)$, the Λ polarization is related to $\Delta_T q(x)$ by:

$$P_{T}^{\Lambda} = f P_{T} D(y) \frac{\sum_{a} e_{a}^{2} \cdot \Delta_{T} q_{a}(x) \Delta_{T}^{0} D_{\Lambda/q}(z)}{\sum_{a} e_{a}^{2} \cdot q_{a} \cdot D_{\Lambda/q}(z)}$$

In the self- analyzing decay: $\Lambda \rightarrow p \pi^-$ B.R. $\cong 64 \%$

the Λ polarisation along the spin direction S is measured by

$$W(\vartheta^*) \propto (1 + \alpha P_s^{\Lambda} \cos(\vartheta^*)) Acc(\vartheta^*)$$

 ϑ^* proton emission angle w.r.t. to S in the Λ rest frame Acc(ϑ^*) the experimental acceptance

$\Delta_{\tau}q(x)$ from Λ polarization

OMPA

Conclusion (3)

- P_{T}^{Λ} has been measured in the COMPASS 2002+2003 transversity data sample.
- The statistics in the most interesting region (x_{Bi} > 0.1) is still poor.
- The study of systematic effects show that they are not larger than the statistical errors
- Including the 2004 data will improve the statistics by a factor of two.

Expected signal for proton running

Expected signal for ~30 days running on NH₃

A. V. Efremov, K. Goeke and P. Schweitzer (hep-ph/0603054)

HERMES results

prepared by Delia Hasch

asymmetries and moments

[angle and moments definitions according to Trento conventions]

$$\frac{\vec{p}_{\text{had}}}{\approx} A^{\text{h}}_{\text{UT}}(\phi,\phi_{\text{S}}) = \frac{1}{|S_{\text{T}}|} \frac{N^{\uparrow}_{\text{h}}(\phi,\phi_{\text{S}}) - N^{\downarrow}_{\text{h}}(\phi,\phi_{\text{S}})}{N^{\uparrow}_{\text{h}}(\phi,\phi_{\text{S}}) + N^{\downarrow}_{\text{h}}(\phi,\phi_{\text{S}})} = \frac{1}{|S_{\text{T}}|} \frac{N^{\uparrow}_{\text{h}}(\phi,\phi_{\text{S}}) - N^{\downarrow}_{\text{h}}(\phi,\phi_{\text{S}})}{N^{\uparrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}}) + N^{\downarrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}})} = \frac{1}{|S_{\text{T}}|} \frac{N^{\uparrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}}) - N^{\downarrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}})}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}}) + N^{\downarrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}})} = \frac{1}{|S_{\text{T}}|} \frac{N^{\uparrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}}) - N^{\downarrow}_{\text{h}}(\phi,\phi,\phi_{\text{S}})}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi,\phi)} = \frac{1}{|S_{\text{T}}|} \frac{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)} = \frac{1}{|S_{\text{T}}|} \frac{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)} = \frac{1}{|S_{\text{T}}|} \frac{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi,\phi)} = \frac{1}{|S_{\text{T}}|} \frac{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi)}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi)} = \frac{1}{|S_{\text{T}}|} \frac{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi)}{N^{\downarrow}_{\text{h}}(\phi,\phi,\phi)} = \frac{1}{|S_{\text{H}}|} \frac{N^{\downarrow}_{\text{h$$

Collins moment $\propto \delta q(x) H_1^{\perp q}(z)$

 \vec{S}_{T}

Sivers moment $\propto f_{1T}^{\perp q}(x)D_1^q(z)$

Collins and Sivers moments extracted by fitting the asymmetry with:

 $A_{UT}^{Fit}(\phi,\phi_{S}) = P(1)\sin(\phi+\phi_{S}) + P(2)\sin(\phi-\phi_{S}) + P(3)\sin(\phi_{S}) + P(4)\sin(2\phi+\phi_{S}) + P(5)$

[Q2>1GeV2, W2>10GeV2, 0.1<y<0.85, 0.023<x<0.4]

hermes Sivers asymmetries $\pi^{+/-}$

 $A_{\rm siv}(\phi - \phi_{\rm S}) \propto f_{\rm 1T}^{\perp}(x) D_{\rm 1}(z)$

[systematic error includes smearing and acceptance effects and contributions from unpolarised <cos2f> and <cosf> moments]

- significantly positive π^+ asymmetry
- → requires non-zero orbital angular momentum
- → first hint of naïve T-odd DF from DIS
- → test of universality:
 - $f_{1T}^{\perp}(x)_{\text{DIS}} = -f_{1T}^{\perp}(x)_{\text{DY}}$
- D₁ known → Sivers DF
 can be extracted from
 HERMES data

Sivers asymmetries K+/-

$A_{\text{siv}}(\phi - \phi_S) \propto f_{1\text{T}}^{\perp}(x) D_1(z)$

- significantly positive $K^{+} \\ \mbox{asymmetry}$
- \rightarrow sea quarks may provide

important contribution to

Sivers function

Sivers asymmetries

\rightarrow pion data fitted

\rightarrow kaon asymmetries predicted

hermes Collins asymmetries $\pi^{+/-}$

$A_{\text{coll}}(\phi + \phi_S) \propto h_1(x) H_1^{\perp}(z)$

• positive π^+ and negative $\pi^$ asymmetries ... as maybe expected:

(∆u>0 → δu >0

- $\Delta d < 0 \rightarrow \delta d < 0$)
- *unexpected large* π[−]
 →role of *unfavoured* fragmentation function?

$$H_1^{\perp}(z)_{unfav.} = H_1^{\perp}(z)_{fav.}$$

 $\rightarrow H_1^{\perp}(z) \text{ NEEDED!}$ BELLE

Collins asymmetries K^{+/-}

$A_{\text{coll}}(\phi + \phi_s) \propto h_1(x) H_1^{\perp}(z)$

K⁺ >0 K⁻>0

K⁺ in agreement with π^+

Collins asymmetries

 \rightarrow h₁ from χ QSM \rightarrow Collins FF: x-dependence: Hermes data fitted to obtain parameter for ansatz of CollinsFF z-dependence: BELLE data fitted and asymmetry for Hermes calculated

complementary way to access transversity: 2hadron asymmetries $e p^{\uparrow} \rightarrow e \pi^{+}\pi^{-} X$

2hadron asymmetry

interference arises from different partial waves of $\pi^+\pi^-$ system

→!collinear factorisation! ← relativ. momentum: $R=(P_{\pi+}+P_{\pi-})/2$ can have transv. component even when integrating over P_{τ} of the pair

→ needs new unknown 2hadron fragmentation function

2hadron asymmetry

$$A_{UT}(\phi_{R\perp},\phi_S,\theta) = \frac{1}{S_{\tau}} \frac{N^{\uparrow}(\phi_{R\perp},\phi_S,\theta)/N_{\text{DIS}}^{\uparrow} - N^{\downarrow}(\phi_{R\perp},\phi_S,\theta)/N_{\text{DIS}}^{\downarrow}}{N^{\uparrow}(\phi_{R\perp},\phi_S,\theta)/N_{\text{DIS}}^{\uparrow} + N^{\downarrow}(\phi_{R\perp},\phi_S,\theta)/N_{\text{DIS}}^{\downarrow}}$$

→ for >2 hadrons: all combinations → exclusive ρ^0 excluded

2hadron asymmetry

HERMES future on TMD

in 2005 statistics nearly doubled compared to 2002-04

→ 2D binning: disentangle x (pdf) and z (FF) dependence

what comes next:

→ weighted asymmetries
 → cos and cos2 moments
 → Sivers extraction with purity formalism

Summary

COMPASS results from 2002 -2004 with ⁶LiD target Collins and Sivers asymmetries compatible with zero 2-hadron asymmetries for all h^+h^- pairs and z ordered pairs Λ polarisation from 2002-2003 data In 2006 running with NH₃ planned

HERMES results from 2002 -2004 with hydrogen target Collins and Sivers asymmetries for pions and kaons 2-hadron asymmetries for all pairs 2005 data will double statistics