CIPANP 2006 Westin Rio Mar Beach, Puerto Rico

Transversity Measurements at COMPASS

Rainer Joosten,

Universität Bonn, Helmholtz Institut für Strahlen- und Kernphysik

on behalf of the COMPASS Collaboration

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

bmb+f - Förderschwerpunkt COMPASS Großgeräte der physikalischen Grundlagenforschung

Puerto Rico, 3.6.2005

Transverse Spin Physics

3 distribution functions are necessary to describe the spin structure of the nucleon at LO:

∆_Tq(x) decouples from inclusive DIS because helicity of quark must flip ⇒ SIDIS

OMPA

Transverse Spin Physics in SIDIS

Two processes:

R. Joosten

Scattering of the lepton on a guark \rightarrow distribution function Production of hadrons from struck guark \rightarrow fragmentation function

Kinematic variables: $Q^2 = -q^2 \cong 4 \in E' \sin\theta/2$ Q ~ resolution $v = (E_{I} - E_{I'})$ photon energy $x_{Bi} = Q^2/2Mv$ momentum fraction of struck quark $= v/E_1$ inelasticity $z = E_{L}/v$ exclusivity

The COMPASS Spectrometer at CERN

COMP

R. Joosten

Transversity Measurements at C

z [mm]

Transverse Spin Physics

<u>3 possible quark polarimeters suggested using SIDIS:</u>

>Azimuthal distribution of single hadrons

paper on 2002 data published Phys. Rev. Lett. 94, 202002 (2005)

>Azimuthal dependence of the plane containing hadron pairs

Measurement of transverse polarization of baryons
 (e.g. Λ hyperon)

R. Joosten

Transversity Data Sample

<u>Target:</u> ⁶LiD (deuterium)

- 2002: 12+7 days of data taking
 - 1.8×10⁹ raw events
- 2003: 14 days of data taking trigger upgrade to gain on large x_{Bj} & large Q² events !
 - 2002 data doubled
- 2004:14 days of data takingDAQ improved and online filter added
 - 🔶 ~ 2003 data doubled

R. Joosten

Single hadron production

Two possible azimuthal asymmetries:

COMPASS

(a) fragmentation of transversely polarized quarks with finite transverse momentum to unpolarized hadrons

 \rightarrow Collins effect --- (access to transversity)

(b) modulation of transverse momentum of unpolarized quarks in the transverse polarized nucleon

 \rightarrow Sivers effect

f dilution factor; P target polarization; D_{NN} = (1-y)/(1-y+y²/2) Depolarization factor R. Joosten Transversity Measurements at COMPASS 8

The coordinate system

Collins and Sivers terms in SIDIS cross-section depend on separate angles \Rightarrow distinguishable

Collins:
$$A_{Coll} \sim \sin \phi_{Coll}$$

$$\phi_{\text{Coll}} = \phi_{\text{h}} - \phi_{\text{S}}, = \phi_{\text{h}} + \phi_{\text{S}} - \pi$$

Sivers:
$$A_{Siv} \sim \sin \phi_{Siv}$$

 $\phi_{Siv} = \phi_h - \phi_S$

- ϕ_s = azimuthal angle of spin vector of <u>initial-state</u> quark/nucleon
- ϕ_{s} , = azimuthal angle of spin vector of <u>fragmenting</u> quark

with $\phi_{S'} = \pi - \phi_S$ (spin flip)

 ϕ_h = azimuthal angle of hadron momentum

Transversity Acceptance

FILTER!

5.8 * 10⁶ positive leading hadrons
4.6 * 10⁶ negative leading hadrons

'OMP A

- 8.5 * 10⁶ positive hadrons
- 7.0 * 10⁶ negative hadrons

Collins Asymmetries

deuteron target

OMPA

Sivers Asymmetries

deuteron target

OMPA

- Possible explanations for small asymmetries:
 - Cancellation between proton and neutron;
 - Small Collins mechanism.
- Peliminary measurement by BELLE (hep-ex/0507063):

 $\Delta_{T}D_{q} \neq 0$ and large!

⇒ evidence for cancellation in isoscalar target;

Phenomenological fits of the data from HERMES and predictions for COMPASS by

Anselmino et al. (hep-ph/0507181),

- Vogelsang and Yuan (hep-ph/0507266),
- Efremov, Goeke and Schweitzer (hep-ph/0603054)

Fits and calculations (Collins effect)

(a)

X Bj

X Bj

Collins Asymmetries

A. V. Efremov, K. Goeke and P. Schweitzer, Collins on Proton and Deuterium (hep-ph/0603054)

OMPA

Sivers Asymmetries

M. Anselmino et al. Sivers on Deuterium (hep-ph/0507181)

COMPA

Conclusion (1)

- A first measurement of Collins and Sivers asymmetries has been performed with a polarized deuteron (⁶LiD) target.
- The measured asymmetries are very small and compatible with zero within the current statistical errors.
- Investigations of systematic effects prove them to be small compared to the statistical error
- Both COMPASS (deuteron) and HERMES (proton) data can be described by the same model, implying for deuteron a cancellation between protons and neutrons.

Transverse Spin Physics

<u>3 possible quark polarimeters suggested using SIDIS:</u>

>Azimuthal distribution of single (leading) hadrons

>Azimuthal dependence of the plane containing hadron pairs

First results on the effect proposed by e.g. Collins et al., Nucl. Phys. B 420 (1994) 565. Jaffe et al., Rev. Lett. 80 (1998) 1166.

> Measurement of transverse polarization of baryons (e.g. Λ hyperon)

R. Joosten

Interference fragmentation function

In SIDIS ($1\,\mathrm{N} \rightarrow \,l'\,h_1^{}h_2^{}\mathrm{X}$) 2-hadron production

 $\Delta_{\mathsf{T}} q_{\mathsf{i}}(\mathsf{x}) \text{ couples to } H_{\mathsf{i}}^{\mathsf{th}}(z,\zeta,M_{\mathsf{h}}^{2},\mathsf{k}_{\mathsf{T}}^{2},\mathsf{k}_{\mathsf{T}}P_{\mathsf{T}}) \qquad \zeta = z_{\mathsf{i}}/(z_{\mathsf{i}}+z_{\mathsf{i}})$

Integrated over $P_{h\perp}$:

$$\sigma_{UT} \propto \sum_{i} e_{i}^{2} |S_{T}| \sin\theta \sin\phi_{RS} (\Delta_{T} q_{i}(x)) H_{i}^{*h}(z, M_{h}^{2}) \propto A_{UT}^{\sin\phi_{RS}} \cdot \sin\phi_{RS}$$

(A. Bacchetta and M. Radici, hep-ph/0407345)

$$\frac{A_{UT}^{\sin\phi_{RS}}}{D_{NN} \cdot f \cdot P} = A_{RS} = \frac{\sum_{i} e_{i}^{2} \Delta_{T} q_{i}(x) H_{i}^{*h}(z, M_{h}^{2})}{\sum_{i} e_{i}^{2} q_{i}(x) D_{i}^{h}(z, M_{h}^{2})}$$

f dilution factor; P target polarization; $D_{NN} = (1-y)/(1-y+y^2/2)$ Depolarization factor

The Coordinate System

Frame where:

- z is the virtual photon direction
- the x-z plane is the lepton scattering plane

Selection of Hadron Pairs

Select all combinations of positive (h_1) and negative (h_2) hadrons with:

R. Joosten

Presently no $\pi/K/p$ separation by RICH

OMPA

Final Sample

Transversity Measurements at COMPASS

COMPA

Conclusion (2)

- First results of the analysis of our transverse target data concerning two hadron asymmetries were shown.
- The observed asymmetries are small.
- Systematics checks performed on the data show, that systematic effects are smaller than the statistical error.

Transverse Spin Physics

<u>3 possible quark polarimeters suggested using SIDIS:</u>

>Azimuthal distribution of single (leading) hadrons

>Azimuthal dependence of the plane containing hadron pairs

Measurement of transverse polarization of baryons
 (e.g. Λ hyperon)

R. Joosten

COMPASS

In the reaction

$$\mu N^{\uparrow} \to \mu' \Lambda^{\uparrow} X$$

 $\Delta_{\tau}q(x)$ from Λ polarization

the Λ polarization is related to $\Delta_T q(x)$ by:

$$P_{T}^{\Lambda} = fP_{T}D(y)\frac{\sum_{a}e_{a}^{2}(\Lambda_{T}q_{a}(x)\cdot\Lambda_{T}D_{\Lambda/q}(z))}{\sum_{a}e_{a}^{2}\cdot q_{a}\cdot D_{\Lambda/q}(z)}$$

Introducing the chiral-odd fragmentation function $\Delta_T D_{\Lambda/q}(z)$.

R. Joosten

 $\Delta_{\tau}q(x)$ from Λ polarization

In the self- analyzing decay:

$$\Lambda \rightarrow p \pi^-$$
 B.R. $\cong 64 \%$

The Λ polarisation along a certain direction \overrightarrow{S} is measured from the angular distribution of the decay protons:

$$W(\vartheta^*) \propto (1 + \alpha P_s^{\Lambda} \cos(\vartheta^*)) Acc(\vartheta^*)$$

 ϑ^* proton emission angle w.r.t. To S in the Λ rest frame $Acc(\vartheta^*)$ the experimental acceptance

Event selection

Momentum of both decay particles > 1 GeV/c
 Collinearity < 10 mrad
 Decay vertex outside of the target
 Armenteros p_T > 23 MeV/c

R. Joosten

Transversity Measurements at COMPASS

29

Conclusion (3)

- P^{Λ} has been measured in the COMPASS 2002+2003 transversity data sample.
- The x_{Bj} dependence does not show a significant deviation from zero
- The statistics in the most interesting region (x_{Bi} > 0.1) is still poor.
- The study of systematic effects show that they are not larger than the statistical errors
- Including the 2004 data will improve the statistics by a factor of two.

Outlook

RICH identification of the hadrons in the one and two hadron analysis will be included

COMPASS in 2006:

 \rightarrow complementary measurements with proton target planned.

Data (of comparable statistics) will be collected on a transversely polarized proton target (NH_3) in 2006 and will allow for a flavor separation.

Expected signal for proton running

Expected signal for ~30 days running on NH₃

A. V. Efremov, K. Goeke and P. Schweitzer (hep-ph/0603054)

Expected signal for proton running

А 0.2 0,15 h Expected signal for 0.1 0.05 ~30 days running on NH₃ D -0.05 -0.1-0.15 -0.2 10-2 10^{-1} Х 0.15 $\mathbf{A}_{\mathsf{UT}}^{\mathsf{sln}(\phi_{h}}$ - ϕ_{s}) 0.1 h+ h-0.05 -0.05 -**a**-Х_В. X_{B 1} 107 10* 107 10^{-a} Sivers effect 0.1 h+ h ⁻ $A_{UT}^{sln(\varphi_h - \varphi_s)}$ 0.05 -0.05 -a-0.2 z, ۵4 <u>a</u>6 ۵ø 0.2 0.4 z_h 8.0 8.0 h+ h⁻ $\mathbf{A}_{\mathsf{UT}}^{\mathsf{sln}(\phi_{\mathrm{h}}}$ - ϕ_{s}) ۵.1 Anselmino et al. (hep-ph/0507181) -a-۵s 1 1.5 2 as 15 ٥ н 2 P_T (GeV/c) P_T (GeV/c)

Thank you

R. Joosten

2-Hadron Asymmetries (z ordered pairs)

Select the combinations of leading (h_1) and next to leading (h_2) hadrons with:

> $z_1 > z_2 > 0.1$ and $x_{f1} > 0.1 \& x_{f2} > 0.1$ > $z = z_1 + z_2 < 0.9$

COMPASS transverse data, hadron pairs production

R. Joosten

COMPA

2-Hadron Asymmetries (z ordered pairs)

Fits and calculations (Sivers effect)

Phenomelogical model with full k_T parametrization of the HERMES and COMPASS (2002) data,

parameters are constrained by HERMES proton measurements;

COMPA

M. Anselmino et al. Sivers on Deuterium (hep-ph/0507181)

COMPASS upgrades for 2006

New target magnet 70 mrad → 180 mrad Gain in statistics ~ 30%

New 3 cell- cavity Reduce systematic effects

Using RICH PID

COMPA

Interference Fragmentation Function $H_{q}^{*h}(z,M_{h}^{2})$

Radici, Jakob, Bianconi, PRD 65, 074031

COMP A.

R. Joosten

Transversity Measurement

2-Hadron Asymmetry all +/- pairs

OMPA

Final sample

Transversity Measurements at COMPASS

¢ompa

Collins and Sivers effects

HERMES data (2002-2004, proton target):

Sivers

G. Schnell, Transverse Spin workshop 05, Como Sep, 7 2005

R. Joosten

Transversity Measurements at COMPASS

44

Interference fragmentation function $H_q^{\neq h}(z, M_h^2)$

One model !

Example $\pi^+\pi^-$ fragmentation:

- ple $\pi^+\pi^-$ fragmentation: $\pi^+\pi^-$ can be produced via the σ (I=0,L=0) and ρ (I=1,L=1) resonances is 0.2 \succ
- Final state is a superposition of two \triangleright resonant states with different relative phases

$$|\pi^+\pi^-,X\rangle = e^{i\delta_0} |\sigma,X\rangle + e^{i\delta_1}|\rho,X\rangle$$

leading to:

R. L. Jaffe, X. Jin and J. Tang, Phys. Rev. Lett. 80, 1166 (1998)

$$H^*(z, M^2_{\pi^+\pi^-}) \sim \sin \delta_0 \sin \delta_1 \sin (\delta_0 - \delta_1) \hat{H}^*(z, M^2_{\pi^+\pi^-})$$

 δ_0, δ_1 depend on $M^2_{\pi^+\pi^-}$ and can be obtained from $\pi\pi$ phase shifts

We measure:

$$N(\Phi) = N_0 \{1 + A_{UT}^{\sin\phi} \cdot \sin\phi\} \cdot F_{acc}(\Phi)$$
$$F_{acc} \quad unknown \; !$$

•

Asymmetry calculation

Reverse spins to cancel out \mathbf{F}_{acc} and fit:

 $A_{UT}^{\sin\phi} \cdot \sin\phi$

$$\boldsymbol{A_{Coll}} = \frac{A_{\boldsymbol{UT}}^{\sin\phi_{\boldsymbol{c}}}}{D_{NN} \cdot f \cdot P} \quad \boldsymbol{A_{Siv}} = \frac{A_{\boldsymbol{UT}}^{\sin\phi_{\boldsymbol{s}}}}{f \cdot P}$$

Predicted Asymmetry

Expected count rate difference:

$$\frac{N^{\uparrow}(\phi_{RS}) - R \cdot N^{\downarrow}(\phi_{RS} + \pi)}{N^{\uparrow}(\phi_{RS}) + R \cdot N^{\downarrow}(\phi_{RS} + \pi)} = A_{UT}^{\sin\phi_{RS}} \cdot \sin\phi_{RS}$$
$$A_N(\phi_{RS}) = \frac{N_u^{\dagger}(\phi_{RS}) N_d^{\dagger}(\phi_{RS})}{N_u^{\dagger}(\phi_{RS}) N_d^{\dagger}(\phi_{RS})} \simeq C(1 + 4A_{UT}^{\sin\phi_{RS}} \sin\phi_{RS})$$

From this we get:

$$\frac{A_{UT}^{\sin\phi_{RS}}}{D_{NN} \cdot f \cdot P} = A_{RS} = \frac{\Sigma_i e_i^2 \Delta_T q_i(x) H_i^{*h}(z, M_h^2)}{\Sigma_i e_i^2 q_i(x) D_i^{h}(z, M_h^2)}$$

f dilution factor; P target polarization; $D_{NN} = (1-y)/(1-y+y^2/2)$ Depolarization factor

R. Joosten

