Diffractive vector meson production at COMPASS and plans for GPD's measurements

×

Andrzej M. Sandacz

Sołtan Institute for Nuclear Studies, Warsaw

> Results on spin dependence for exclusive ρ^{o} production

a) ρ^{o} spin density matrix elements and R = σ_{L} / σ_{T}

b) longitudinal double-spin asymmetry A_1^{ρ} \longleftarrow new result

Future measurements of GPDs at COMPASS

PANIC05, Santa Fe, October 24-28, 2005

Physics of exclusive ρ^0 production

pQCD calculations or pQCD-inspired models with exchange of 2 quarks or 2 gluons (at $Q^2 > 1$ GeV²)

Regge theory:

At low energy (W < 5 GeV) exchange of Reggeons ρ , ω , a_2 , f_2

At higher energies exchange of Pomeron

Aim of the present analysis:

spin structure of cross section / helicity amplitudes for $\gamma^* N \rightarrow \rho^0 N$

- Similar is helicity of γ^* retained by ρ^0 (SCHC)
- natural/unnatural parity of exchanged object

$$\mathbf{P} \mathbf{R} = \mathbf{\sigma}_{\mathbf{L}} / \mathbf{\sigma}_{\mathbf{T}} \text{ vs. } \mathbf{Q}^{\mathbf{2}}$$

Better understanding of Pomeron's nature

Diffraction

Incoherent exclusive ρ^0 production

Kinematics: v > 30 GeV Eµ' > 20 GeV Q² > 0.01 GeV²

> (Q² cut not applied in double-spin asymmetry analysis)

ρ° angular distributions W(cosθ, φ, Φ) depend on the spin density matrix elements (SDME) ⇒ 23 (15) observables with polarized (unpolarized) beam

SDMEs are bilinear combinations of the helicity amplitudes $A(\gamma^*(\lambda_{\gamma}) \rightarrow \rho(\lambda_{\rho})) \equiv T_{\lambda\rho, \lambda\gamma}$ $\lambda_{\gamma} = \pm 1, 0 \quad \lambda_{\rho} = \pm 1, 0$

This analysis: only one-dimensional angular distribution

We also use: $\psi = \phi - \Phi$

Angular distributions

Preliminary : - Corrected for Acceptance, smearing and

efficiency (MC:DIPSI gen)

Background
 not subtracted

Statistical errors only, limited by MC

Measurement of r_{00}^{04}

Distribution : W(cos θ) = $\frac{3}{4} \left[(1 - r_{00}^{04}) + (3r_{00}^{04} - 1)\cos^2\theta \right]$

Spin density matrix element:

Determination of $R_{\rho^{\circ}} = \sigma_L / \sigma_T$

Impact on GPD study: easy determination of σ_L factorisation only valid for σ_L σ_L is dominant at Q²>2 GeV²

Measurement of r_{1-1}^{04} and Im r_{1-1}^{3}

- an arise from exchange of $a_1(1260)$ trajectory in t-channel (small at 160 GeV)
- from interference of amplitudes for exchange in t-channel of Reggeons with natural parity: ρ , ω , f, $a_2(1320)$, P(pomeron) and unnatural parity: π , $a_1(1260)$ (sensitivity even to small contributions of the latter ones)
- if only non-perturbative $P \quad A_1^{\rho} \approx 0$

in pQCD-inspired models possible $A_1^{\rho} \neq 0 \Rightarrow$ access to spin dependent GPDs Ryskin Goloskokov and Kroll Evaluation of depolarization factor (D) and dilution factor (f) for incoherent exclusive ρ^0 production

$$egin{aligned} A_{LL}(\mu N o \mu N
ho^0) &= rac{\sigma(\mu N)_{\uparrow \Downarrow} - \sigma(\mu N)_{\uparrow \Uparrow}}{\sigma(\mu N)_{\uparrow \Downarrow} + \sigma(\mu N)_{\uparrow \Uparrow}} = rac{1}{f} \cdot rac{1}{P_b} \cdot rac{1}{P_t} \cdot A_{LL}^{raw} \ A_1^
ho(\gamma^* N o
ho^0 N) &pprox rac{1}{D} A_{LL}(\mu N o \mu N
ho^0) \end{aligned}$$

used values of A-dependent cross sections (for f) and ratio R (for D) specific for incoherent exclusive ρ^0 production

for more details on extraction of A_1^{ρ} see talk of Oleg Grajek at Dubna-Spin05

at http://thsun1/jinr.ru/meeting/2005/spin2005

COMPASS preliminary and HERMES results on $A_1^{\rho}(d)$

COMPASS results on A_1^{ρ} on polarized deuteron target consistent with 0

Extended kinematical range of COMPASS by almost 2 decades down both in Q² and x

COMPASS : inner bars –stat. outer – total errors HERMES: total errors

GPDs and relations to the physical observables

New: liquid H2 target + recoil detector + extended calorimetry (ECAL0)

2004-2007:

Goal: full test of feasibility of a 45° (in φ) sector recoil detector 2010:

To be ready with the full detector

DVCS+ Bethe Heitler

The high energy muon beam at COMPASS allows to play with the relative contribution DVCS-BH which depends on

$$1/y = 2 m_p E_{\ell} x_{Bj} /Q^2$$

Higher energy: DVCS >> BH \Rightarrow DVCS cross section

Smaller energy: DVCS~BH ⇒Interference term will provide DVCS amplitude

Example of estimates for DVCS at COMPASS

DVCS Beam Charge Asymmetry (BCA) measured with the 100 GeV muon beam at COMPASS

High-statistics data on SDM elements and R for incoherent exlusive ρ^0 production in a wide Q² range (including small Q² not covered previously)

Asymmetry A₁^ρ (d) consistent with zero over wide range of Q² and x first measurement at small Q² and small x

Preparations for GPDs measurements at COMPASS in progress high-statistics results on DVCS and HEMP possibly since 2010