Measurement of polarized (quark) structure functions at COMPASS

T. Matsuda – Uni. of Miyazaki, Japan

on behalf of the COMPASS collaboration

The COMPASS experiment at CERN
 Longitudinal quark helicity distributions

 A₁^d
 Dq flavour decomposition

 Transversity

 Collins & Sivers, 2 hadron correlation
 Summary and outlook

第5回環太平洋 シンポジウム 高エネルギー スピン物理」 東京、7月、2005

1. The COMPASS experiment at CERN

Data taking History

- 2002 year muon run (L,T target)
- 2003 year muon run (L,T target)
- **2004** year muon run (L,T target) + Hadron run

(muon beam share:

longitudinal PT ~80%, transeverse PT ~20%)

<u>Common Muon and Proton Apparatus for Structure and Spectroscopy</u>

2. Longitudinal target experiment

- $\cdot A_1^d$, (g_1^d)
- •A QCD fit to world data
- Semi-inclusive asymmetries

The inclusive asymmetry A₁^d --2002 & 2003 data--

gnucleon asymmetry:

$$\frac{A_{\mu N}}{D} \approx A_1 = \frac{\Sigma e_q^2 \left(\Delta q + \Delta \bar{q}\right)}{\Sigma e_q^2 \left(q + \bar{q}\right)}$$

- COMPASS is:
 - higher luminosity
 - (~ 5 times stronger)
 - larger dilution factor
 (~2 times larger)(LiD)
 - -- more variety of trigger than SMC.

-- almost the same kinematic region covered as SMC

- $g_1=A_1F_1$ derived.
- Unique result in the low *x* region important to test QCD sum rules

A QCD fit to world data

low x accuracy has been much improved

Program by D. Fasching, hep-ph/9610261 (program "2" in SMC notation)

The COMPASS data change the $\int_0^1 \Delta \Sigma(x) dx$ Integral: $DS = \int_0^1 \Delta \Sigma(x) dx = 0.237 \frac{+0.024}{-0.029} \text{ all data}$ $= 0.202 \frac{+0.042}{-0.077} \text{ w/o COMPASS}$

Taken at $Q^2 = 4 \text{GeV}^2/c^2$.

Precision improved by a factor of 2

Semi-inclusive asymmetries $A^{h+}_{1.d}, A^{h-}_{1.d}$ extracted from 2002+2003 COMPASS data

low x precision improved

3. Transverse target experiment

- Transversity -introduction
- Transversity -Collins & Sivers asymmetry
- Transversity two hadron correlation

What is <u>Transversity?</u>

•Nucleon structure functions are described with 3 functions at twist 2 and they are complete at twist level 2.

 $\Delta_T q(x)$ is different from $\Delta_T q(x)$ generally because rotation does not commute with Lorentz boost in relativity. $(\Delta q(x) = \Delta_T q(x) \text{ in non-relativity})$

 $\Delta q(x)$ is a chiral even fuction, $\Delta_T q(x)$ is a chiral odd function.

 ${}^{\bullet}\!\Delta_T q(x)$ does not couple with gluon structure function $% Q^2$, then it evolves with Q^2 unlike $\Delta q(x).$

 $\Delta_{\mathsf{T}} \mathbf{q}(\mathbf{x}) \leq \frac{1}{2} [\mathbf{q}(\mathbf{x}) + \Delta \mathbf{q}(\mathbf{x})] \quad \mathbf{g}_{\mathsf{T}} = \int d\mathbf{x} [\Delta_{\mathsf{T}} \mathbf{q}(\mathbf{x}) - \Delta_{\mathsf{T}} \overline{\mathbf{q}}(\mathbf{x})] \quad \frac{1}{2} = \frac{1}{2} \sum_{q, \overline{q}} \int \Delta_{\mathsf{T}} \mathbf{q}(\mathbf{x}) d\mathbf{x} + \sum_{q, \overline{q}, g} < \mathsf{L}_{\mathsf{S}_{\mathsf{T}}} >$ (Soffer inquality) (Tensor charge) (Transverse Spin SR)

How do we measure transversity?

•Quark helicity is conserved in <u>totally</u> <u>Inclusive</u> Deep Inelastic Scattering (IDIS), so Inclusive DIS does not access to transversity, because transversity needs quark helicty flip in helicity base.

•In case of <u>Semi-Inclusive</u> Deep Inelastic(SIDIS) it is possible to access transversity, because SIDIS allows both flip and non-flip cases.

<u>Then we measure SIDIS events to study transversity.</u> •If we choose phenomena with chiral odd fragmentation functions,

we can access chiral odd quark distribution functions.

- •We measure SIDIS including transversity in
 - (1) Collins asymmetry and Sivers asymmetry
 - (2) SSA in two hadron correlation.

<u>(1) Collins and Sivers asymmetries</u> Collins angle & Sivers angle.

- $f_s = azim$. angle of inital quark spin $f_{s'} = azim$. angle of struck quark spin
- $\mathbf{f}_{s} = \pi \mathbf{f}_{s}$, (due to helicity conservation) \mathbf{f}_{h} =azim. Angle of leading hadron

•Collins angle

(Azimuthal angle of a leading hadron around a Struck quark spin)

 $\mathbf{F}_{\mathbf{C}} = \mathbf{f}_{\mathbf{h}} - \mathbf{f}_{\mathbf{S}}, \ (= \mathbf{f}_{\mathbf{h}} + \mathbf{f}_{\mathbf{S}} - \pi)$

•Sivers angle

 $\mathbf{F}_{S} = \mathbf{f}_{h} - \mathbf{f}_{S}$

(Azimuthal angle of a leading hadron around an initial quark spin (=nucleon spin)) Initial quark spin (Target spin) Struck quark spin

Collins asymmetry and Sivers asymmetry

Primary vertex with identified μ , μ ' & hadron

W > 5 GeV/c²

Event selction cont. <u>for hadrons</u>

Hadron selection:

- energy deposit in hadron calorimeters
- \cdot Penetration < 10 X₀
- \cdot Presently no π / K / p separation by RICH

<u>Collins and Sivers asymmetries for</u> <u>leading hadron (2002 final results)</u>

<u>Collins and Sivers asymmetries for</u> <u>all hadrons (2002+2003 data)</u> preliminary

<u>Collins and Sivers asymmetries for</u> <u>leading hadrons (2002+2003 data)</u>

Comparison of COMPASS 2002 results with HERMES ones.

(COMPASS; deuteron, HERMES; proton)

POSITIVE HADRONS: COMPASS vs HERMES

NEGATIVE HADRONS: COMPASS vs HERMES

Note: The sign of the original definition of HERMES is opposite.

Event Selection-two hadron correlation-

For m same as others.

Hadron multiplicity Hadron multiplicity Hadron multiplicity

(longitudinal part)

• New data (2002+2003) for A_1^d and g_1^d were shown (published).

significant improvement at low x

- A QCD fit including new deuteron data was shown. $\Delta\Sigma$ obtained
- New data (2002+2003) for semi-inclusive asymmetries $A^{h+}_{1,d}$, $A^{h-}_{1,d}$ were shown (preliminary).

(transverse part)

Collins and Sivers SSA calculated

2002 data (published), 2003 data (preliminary)

SSA in two hadron correlation were shown

2002 +2003 data (preliminary)

• In both cases asymmetries are small and compatible with zero.

... Outlook

(analysis)

 2004 data (both longitudinal and transvers) under analysis

(experiment)

 muon program will be going on in 2006 and more data will be accumulated

--deutron target(LiD) for longitudinal part

 $--proton target(NH_3)$ for transverse part

--> complementary and comparable accuracy to

deuteron data expected

Merci

Addendum after my talk $X VS Q^2$ distribution

Dependence of A_1^d on Q^2

QCD fit to world data

		Compass fit	Compass fit	AAC03	LSS05
5		Comp. data incl.	Comp.data excl.		
ΔΣ	$Q^2 = 1 \text{ GeV}^2$	$\begin{array}{r} 0.239 \\ -0.025 \end{array} + 0.024$	$\begin{array}{r} 0.216 \\ -0.048 \end{array} + 0.036$	0.213 ± 0.039	0.189 ± 0.054
	$Q^2 = 4 \text{ GeV}^2$	$\begin{array}{r} 0.237 \\ -0.029 \end{array} +0.024$	$\begin{array}{r} 0.202 \\ -0.077 \end{array} + 0.042$		
ΔG	$Q^2 = 1 \text{ GeV}^2$	0.44 ± 0.19	0.44 ± 0.21	0.50 ± 0.35	0.20 ± 0.26
	$Q^2 = 4 \text{ GeV}^2$	$\begin{array}{r} 0.47 \\ -0.20 \end{array} $	0.53 ± 0.23		

Table 3: Quark spin content ($\Delta\Sigma$ in \overline{MS} scheme) and ΔG . The quoted errors are only statistical.