

Transversity signals in two hadron correlations at COMPASS

Rainer Joosten, University of Bonn

on behalf of the COMPASS Collaboration

Trieste, October 10-16

Transverse Spin Physics

3 distribution functions are necessary to describe the spin structure of the nucleon at LO:

COMPASS: polarized μ^+ on a polarized ⁶LiD target

R. Joosten

Transverse Spin Physics

- 3 possible quark polarimeters suggested using SIDIS:
- $\blacktriangleright Measure transverse polarization of \Lambda$
- Azimuthal distribution of leading hadrons
- > Azimuthal dependence of the plane containing
 - hadron pairs \leftarrow This talk !

The coordinate system

Frame where:

- z is the virtual photon direction
- the x-z plane is the lepton scattering plane

A. Bacchetta and M. Radici, Proceedings of the DIS 2004, hep-ph/0407345

Transverse Spin Physics

Interference fragmentation function

Example $\pi^+\pi^-$ fragmentation:

- ple $\pi^+\pi^-$ fragmentation: $\pi^+\pi^-$ can be produced via the σ (I=0,L=0) and ρ (I=1,L=1) resonances is 0.2 \succ
- Final state is a superposition of two \succ resonant states with different relative phases

$$\pi^+\pi^-, X \ge e^{i\delta_0} |\sigma, X \ge e^{i\delta_1} |\rho, X \ge e^{i\delta_1}$$

leading to:

R. L. Jaffe, X. Jin and J. Tang, Phys. Rev. Lett. 80, 1166 (1998)

$$H^{\bigstar}(z,M^{2}_{\pi^{+}\pi^{-}})\sim \sin \delta_{0} \sin \delta_{1} \sin (\delta_{0}-\delta_{1}) \hat{H}^{\bigstar}(z,M^{2}_{\pi^{+}\pi^{-}})$$

 δ_{0},δ_{1} depend on $M^{2}_{\pi^{+}\pi^{-}}$ and can be obtained from $\pi\pi$ phase shifts

R. Joosten

Data Sample

2002:

- 12+7 days of data taking (total) with transversely polarized ⁶LiD target (separate analysis for both periods of data taking)
- 1.8 * 10⁹ events
- 1.3*10⁶ events after all cuts (preliminary)
- 2003: 14 days of data taking
 with transversely polarized ⁶LiD target
 2003 trigger upgrade to gain sensitivity
 on large x_{Bj} & large Q² events !
 - 2002 data doubled
- 2004: 14 days of data taking DAQ improved and online filter added
 - ~ 2002+2003 data doubled

R. Joosten

Primary vertex with identified μ , μ '

Kinematical cuts:

Q² > 1 (GeV/c)²

Event selection (1)

Event selection (2)

Selection of hadron pairs:

- → leading (lh) and next to leading hadron (nlh) with
 - \succ Penetration < 10 X_0
 - > Track quality $\chi^2_{red} < 10$

Presently no π / K / p separation by RICH

> Cut on lh based on kinematics: z > 0.25

Hadron sample

¢omp_&

Hadron sample

R. Joosten

¢omp_a

Transversity signals in two hadron correlations at COMPASS

R. Joosten

Asymmetry calculation

For each polarization and target cell we measure:

$$N(\varphi_{RS}) = N_0 \{1 + A_{UT}^{\sin \varphi_{RS}} \cdot \sin \varphi_{RS}\} \cdot F_{acc}(\varphi_{RS})$$

To cancel out the acceptance function \mathbf{F}_{acc} we additionally measure with opposite spins and subtract the normalized data-sets.

The counting rate asymmetry is then calculated for φ_{RS} bins by:

$$A_{N}(\varphi_{RS}) = \frac{N^{+}(\varphi_{RS}) - R \cdot N^{-}(\varphi_{RS})}{N^{+}(\varphi_{RS}) + R \cdot N^{-}(\varphi_{RS})} \quad \text{where} \quad R = \frac{N^{+}_{\text{tot}}}{N^{-}_{\text{tot}}}$$

The result is then fitted by: $A_{0} + A_{UT}^{\sin\varphi_{RS}} \cdot \sin\varphi_{RS}$
So that we get: $A_{\varphi_{RS}} = \frac{A_{UT}^{\sin\varphi_{RS}}}{D_{NN} \cdot f \cdot P}$

R. Joosten

Expected asymmetry error (2002 data)

R. Joosten

OMPA

Expected asymmetry error (2002 data) *OMPA* ${\boldsymbol{\mathsf{A}}}_{\phi_{\mathsf{RS}}}$ 0.2 2002 data expected error $z = z_{1h} + z_{nlh}$ 0.1 preliminary -0.1 0.2 $\mathsf{A}_{\mathfrak{P}_{\mathsf{RS}}}$ 2002 data z < 0.5expected error (Oct. 4, 2004) -0.2 0.1 0.5 M_{inv} [GeV/c²]^{1.5} 0 0 preliminary -0.1 z > 0.5(Oct. 4, 2004) -0.2 0.5 0 [GeV/c²] M_{inv}

R. Joosten

Conclusion & Outlook

- The analysis of our transverse target data concerning two hadron asymmetry signals started.
- The gathered statistics and estimated errors from the 2002 data are promissing.
- Including 2003 & 2004 data
 → sensitivity improvement by factor ~ 2 expected
- The analysis is ongoing, and:

First results on two hadron correlations on a transversely polarised target can be expected in spring 2005

END of talk