

### **Franco Bradamante**

**University of Trieste and INFN Trieste** 

on behalf of the COMPASS Collaboration



X WORKSHOP ON HIGH ENERGY SPIN PHYSICS Dubna, September 16 - 20, 2003





**NA58** 

Finland, France, Germany, India, Israel, Italy, Japan, Poland, Portugal, Russia, Switzerland

Bielefeld, Bochum, Bonn, Burdwan, Calcutta, CERN, Dubna, Erlangen, Freiburg, Heidelberg, Helsinki, Lisbon, Mainz, Miyazaky, Moscow, Munich, Nagoya, Protvino, Saclay, Tel Aviv, Torino, Trieste, Warsaw

28 Institutes, more than 200 physicists





- Spectrometer and data taking 2002
- A first look at the 2002 data
  - Lambda
  - Exclusive  $\rho$  and  $\phi,$  J/ $\psi$
  - Transversity
  - Flavour separation
- Status of  $\Delta g$  at COMPASS
  - D<sup>0</sup> and D<sup>\*</sup> signal
  - High- $p_T$  hadron pairs
- Perspectives





| experiment:    | thought of in  | April '94 | Trento workshop  |
|----------------|----------------|-----------|------------------|
|                |                | Nov. '94  | Trieste workshop |
|                | Lol            | March '95 |                  |
|                | encouraged     | June '95  | SPSLC in Cogne   |
|                | Proposal       | March '96 |                  |
|                | recommended    | Sept. '96 |                  |
|                | approved by RB | Feb. '97  | as NA58          |
|                | Technical run  | 2000      |                  |
|                | Commissioning  | 2001      |                  |
| since 2002 tal | king data      |           |                  |
|                | with           |           |                  |

a new spectrometer with outstanding performances

 merging of two programmes: HMC CHEOPS (muon beam) (hadron beam)

# COMPASS Programme with the muon beam of the polarised parton density functions in a polarised nucleon from measurements of hadron asymmetries in semi-inclusive polarised DIS, both longitudinal and transverse specifically, • to measure the gluon polarisation ΔG through open charm (Gluk and Reya, Altarelli and Stirling, 1988)



flavour decomposition of  $g_1$  from identified hadron asymmetries:  $\Delta u$ ,  $\Delta d$ ,  $\Delta s$ 

- to measure h<sub>1</sub>, the new territory
- to measure the spin transfer in fragmentation from Λ production
- to remeasure with high statistics g<sub>1</sub> and g<sub>2</sub>



ē

# **COMPASS** Programme with hadron beams

### charmed hadrons

- **production** phenomena (p, π, K)
- Ieptonic decays
- semileptonic decays
- precision measurements of c-baryon lifetimes
- production and spectroscopy of cc-baryons

### gluonic states

- search for glueballs in Pomeron-Pomeron scattering
- search for exotic states

### hadron structure

polarizability in Primakoff reactions



# **The COMPASS Spectrometer**





# A look in Hall 888



# A look in Hall 888





Spin-03

# **Spectrometer 2002**







# **Polarised target**





- <sup>6</sup>LiD
- $\pm$  50 % polarisation
- 50 % dilution factor
- 2.5 T
- 50 mK

μ

Spin-03

# **Target system**



# **<u>RICH1</u> Ring Imaging Cherenkov**



- 90 m<sup>3</sup> (3 m C<sub>4</sub>F<sub>10</sub>)
- 116 VUV mirrors (focal lenght 3.3 m)
- 5.3 m<sup>2</sup> UV detectors
  - MWPC Csl cathods
  - 8x8 mm<sup>2</sup> pad
- 84k analog r/o channels
- K/ $\pi$  separation up to ~40 GeV









COMPASS

### 116mirrors, 20 m<sup>2</sup>



**PDs**, 5.3 m<sup>2</sup>

# **RICH1 performance**



# single event, low intensity 80 % $C_4 F_{10}$ , 2050V



# Cherenkov angle for rings with $\beta \cong 1$



Data <n> = 15 photons σ = 0.39 mrad

MC  $\langle n \rangle = 25$  photons  $\sigma = 0.23$  mrad

# **MicroMegas** Micro Mesh Gas Detectors



### **Novel gaseous detector**





# **MicroMegas**

### time resolution below 10 ns







efficiency larger than 97%



Spin-03

# <u>GEMs</u>

- novel gaseous detector
- efficiency ~ 96 97%

### 30 x 30 cm<sup>2</sup>





MP.



# **GEMs**

- two dimensional read-out
- spatial resolution ~60 μm
- time resolution ~ 15 ns





### amplitude correlation



# **STRAW Project**





- 15 double layers
- 3250 x 2420 mm<sup>2</sup> with a 160 x 230 mm<sup>2</sup> hole
- 6 mm and 10 mm diameter straws



**1-03** 

## **STRAW - tracking results**









- 'initial spectrometer layout' essentially complete
- 160 GeV/c muons, 2·10<sup>8</sup>  $\mu^+/4$  s every16.8 s, P<sub>beam</sub>  $\cong$  80 %
- <sup>6</sup>LiD target,  $P_{target} \cong 50$  %
- polarisation reversal by magnet field rotation every 8 h
- 200 k readout channels, 35-40 kB/event
- data taking:
  - 24 days setup (about 2/3 of equipment new)
  - 57 days longitudinal target polarisation
  - 19 days transverse
- 5 billion events recorded, 260 TByte total

# **Central Data Recording**







# **Reconstruction stability**



### K0 yield as function of run number



### zero suppressed

target polarisation

Spin=03

# **First Analysis Results**



•  $\Lambda$  and  $\Lambda$  hyperon production

- ➔ M. Sapozhnikov
- Vector meson production  $\rho$ ,  $\phi$  and J/ $\psi$   $\rightarrow$  J. Marroncle
- Flavour decomposition of polarized PDF
- Transversity and Collins asymmetry
- $\Delta$ G/G from open charm
- $\Delta$ G/G from high-p<sub>T</sub> hadron pairs









### Armenteros-Podolanski

$$\alpha = \frac{P_{L}^{+} - P_{L}^{-}}{P_{L}^{+} + P_{L}^{-}}$$



-0.5

0.5

XF

P [GeV/c]

ዮ





E

Q<sup>2</sup> [GeV<sup>2</sup>/c<sup>2</sup>]

# $\Lambda$ polarisation?





1/6 of 2002 Statistics

 $Q^2 > 1 \,\mathrm{GeV}^2$ 0.2 < y < 0.9

good potential for polarisation measurement

Spin=03

# **Exclusive** $\rho$ and $\phi$ production



| meson    | mass cut                               | statistics $(1/6 \text{ of } 2002)$ |
|----------|----------------------------------------|-------------------------------------|
| $\rho^0$ | $0.5 < m_{\pi\pi} < 1 \mathrm{GeV}$    | $1.3\cdot 10^6$                     |
| $\phi$   | $ m_{KK} - m_{\phi}  < 9 \mathrm{MeV}$ | $42 \cdot 10^3$                     |





### **Invariant masses**





### 16 % of total 2002 statistics

### no MC corrections yet





# Interference of $\rho^0$ and $\pi\pi$



• No accept. corr.

### **Angular distributions**





pin=03

# $J/\psi$ production





$$\underline{\textbf{Collins angle}} \quad \Phi_{\textbf{C}} = \Phi_{\textbf{h}} - \Phi_{\textbf{s}'} = \Phi_{\textbf{h}} + \Phi_{\textbf{s}} - \pi$$





 $\Box \, \Phi_{\rm h}$  final leading hadron azimuthal angle around the quark direction



 $\Box \Phi_s$  is the azimuthal angle of the final quark spin in a ref. System with z axis defined by  $\gamma$  direction and x-z plane defined by the scattering plane







### $A_{UT}$ for positive leading hadron



# Estimated error from 2002 data only, extrapolated from analysed sample

# **Flavour separation** $\Delta q$





Looks very promising in particular for  $\Delta s$  !

Can the first moment of  $\Delta s$  be positive?

Low-x data essential!







### **Photon-gluon fusion: 1.2 D<sup>0</sup> per PGF** $c\overline{c}$ event



### D<sup>0</sup> from D<sup>\*</sup> about 20 %

## **Open charm, cuts**



- most of 2002 data, prel. RICH and tracking
- $z_{\rm D} > 0.2$  (background reduction)
- $|\cos(\theta^*)| < 0.85$  (background reduction)
- $10 < p_{\rm K} < 35 \ {\rm GeV}/c$  (Rich  $\pi {\rm K} \, {\rm sep.}$ )
- define:

$$\Delta M_{\mathrm{K}\pi\pi} = M_{\mathrm{K}\pi\pi_s} - (M_{\mathrm{K}\pi} + M_{\pi_s})$$

 $M(D^*) - [M(D^0) + M(\pi)]$ 



# $D^{*_{+}} \rightarrow D^{0} \pi_{s}^{+}$ tagging





 $D^{*+} \rightarrow D^0 \pi_s^{+}$  tagging





# $\underline{\Lambda g: high-p_T}$ hadron pairs





- μ, μ ' + 2 hadrons
- in plots only 5% of 2002 data



### $\Delta g: high-p_T hadron pairs$



for ∆G/G analysis we'll use
 0.4 < y < 0.9, x<sub>F</sub> > 0.1

•  $p_{T,1}^2 + p_{T,2}^2 > 2.5 \, (\text{GeV/c})^2$ 

(*p*<sub>*T,i*</sub> > 1.1 GeV/*c*)

### extrapolated to full 2002 statistics

- Q<sup>2</sup>>1 GeV<sup>2</sup>: 18000 events
- all Q<sup>2</sup>: 160000 events

### from 2002 data: $\delta(\Delta G/G) \cong 0.31$ ; Q<sup>2</sup>>1 GeV<sup>2</sup> $\cong 0.1$ ; all Q<sup>2</sup>

Can data with Q<sup>2</sup><1 GeV<sup>2</sup> be interpreted (resolved photon)? note: 2002 data correspond about to Hermes 1996-2000, Hermes used all data

# <u>Outlook</u>



- 2003 muon run, poor beam up to now
- 2004 long SPS run of 150 days (?)
  - muon plus 4 week hadron pilot run (?)
  - new target magnet with larger acceptance (?)
- 2005 CERN accelerator shutdown
- 2006 2010
  - request in preparation
  - CERN council: COMPASS should continue in 2006
- more hardware to come: ECAL ( $\pi^0$ ), RICH, DAQ,...







# **Summary**



- COMPASS is up and running
- Lots of high statistics data to come
- First glance at open charm PGF with polarised target and beam
- Good perspectives for  $\Delta G$  from high- $p_T$  hadron pairs  $(\pi, K)$
- Promising perspectives for running after 2005 and with LHC.



# Thank you



# and see you all in Trieste **SPIN 2004 October, 10 - 16**

Spin=03