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Abstract

A search for the exclusive production of the Z±c (3900) hadron by virtual photons has been performed
in the channel Z±c (3900)→ J/ψπ±. The data cover the range from 7 GeV to 19 GeV in the centre-
of-mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with
a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z±c (3900)→
J/ψπ±)×σ

γ N→Z±c (3900) N/σγ N→J/ψ N of 3.7×10−3 has been established at the confidence level
of 90%.
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TheZ±c (3900) state was recently discovered by the BES-III and Belle Collaborations in e+e−→π+π−J/ψ
reactions at

√
s= 4.26 GeV [1, 2] via the decay channel

Z±c (3900)→ J/ψπ±. (1)

It has been interpreted as a tetraquark state [3–6], although other explanations like a molecular state [7–
11], a cusp effect [12] and an initial-single-pion-emission mechanism [13] were also proposed. Accord-
ing to the vector meson dominance (VMD) model, a photon may behave like a J/ψ so that a Z±c (3900)
can be produced by the interaction of an incoming photon with a virtual charged pion provided by the
target nucleon

γ N → Z±c (3900) N. (2)

The corresponding diagram is shown in Fig. 1a.

Based on the VMD model, the authors of Ref. [14] predict a sizable cross section of the reaction in
Eq. (2) for √sγN ∼ 10 GeV. Under the assumption that the decay channel of Eq. (1) is dominant and
that the total width Γtot of the Z±c (3900) particle is 46 MeV/c2, as measured by BES-III, the cross
section reaches a maximum value of 50 nb to 100 nb at√sγN = 7 GeV. The J/ψ production in photon-
nucleon interactions at COMPASS covers the range √sγN from 7 GeV to 19 GeV and thus can be
used to also study Z±c (3900) production and to estimate the partial width ΓJ/ψπ of the decay channel
Z±c (3900)→ J/ψπ±.
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Fig. 1: Diagrams for (a) Z+
c (3900) production via virtual π+ exchange and (b) J/ψπ+ production via pomeron

exchange.

The COMPASS experiment [15] is situated at the M2 beam line of the CERN Super Proton Synchrotron.
The data used in the present analysis were obtained scattering positive muons of 160 GeV/c (2002-2010)
or 200 GeV/c momentum (2011) off solid 6LiD (2002-2004) or NH3 targets (2006-2011). The longitu-
dinally or transversely polarised targets consisted of two (2002–2004) or three (2006–2011) cylindrical
cells placed along the beam direction. Polarisation effects were canceled out by combining data with
opposite polarisation orientations. Particle tracking and identification were performed in a two-stage
spectrometer, covering a wide kinematic range. The trigger system comprises hodoscope counters and
hadron calorimeters. Beam halo was rejected by veto counters upstream of the target.

In the analysis presented in this Letter, the reaction

µ+ N → µ+Z±c (3900) N → µ+J/ψπ±N → µ+µ+µ−π±N (3)

was searched for. In order to select samples of exclusive µ+J/ψπ± events, a reconstructed vertex in
the target region with an incoming beam track and three outgoing muon tracks (two positive and one
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Fig. 2: (a) The dimuon mass distribution for all dimuons produced in muon-nucleon scattering (blue, upper
curve), and for exclusively produced dimuons (yellow, lower curve). (b) Distribution for the energy balance ∆E in
the reactions Eq. (7) (yellow, upper curve) and Eq. (3) (green, lower curve).

negative) is required. Tracks are attributed to muons if they cross more than 15 radiation lengths of
material. Only the events with exactly three muons and one pion in the final state were selected. A pair
of muons is treated as J/ψ candidate if the difference between its reconstructed massMµ+µ− (Fig. 2a) and
the nominal J/ψ mass is less than 150 MeV/c2. In case both µ+µ− combinations satisfy this condition,
the event is rejected. Except for the tiny recoil of the target nucleon, the sum of the scattered muon
energy, Eµ′ , and the energies of produced J/ψ and π± mesons, EJ/ψ and Eπ± , should be equal to the
beam energy Eb for the exclusive reaction of Eq. (3). The distribution of events as a function of the
energy balance ∆E = Eµ′ +EJ/ψ +Eπ± −Eb is presented in Fig. 2b. With the experimental energy
resolution of about 3 GeV, the energy balance is required to be |∆E| <10 GeV. The distribution of the
negative squared four-momentum transfer Q2 =−(Pb−Pµ′)2 is shown in Fig. 3a. Here Pµ′ and Pb are
four-momenta of the scattered and incident muons, respectively. The momentum of the produced pion is
required to be larger than 2 GeV/c in order to reduce the background of exclusive events with a J/ψ and
a π± in the final state produced via pomeron exchange (Fig. 1b). The total number of selected µ+J/ψπ+

and µ+J/ψπ− events is 565 and 405, respectively. The distribution of the centre-of-mass energy of the
photon-nucleon system√sγN is shown in Fig. 3b.

The mass spectrum for J/ψπ± events is shown in Fig. 4a. It does not exhibit any statistically signifi-
cant resonant structure around 3.9 GeV/c2. The observed number of events NJ/ψπ in the signal range
3.84 GeV/c2 <MJ/ψπ+ < 3.96 GeV/c2 is treated as consisting of an a priori unknown Z±c (3900) signal
NZc and a background contributionNbkg. According to the method described in Ref. [16], the probability
density function g(NZc) is given by

g(NZc) = n

∫ ∞
0

e−(NZc+Nbkg)(NZc +Nbkg)NZc

NZc!
f(Nbkg)dNbkg, (4)

where n is a normalization constant and the probability density function f(Nbkg), assumed to be Gaus-
sian, describes the background contribution in the signal interval. The mean value and the Gaussian width
of f(Nbkg) are estimated by fitting a sum of two exponential functions (A · e−aMJ/ψπ +B · e−bMJ/ψπ ) to
the J/ψπ± mass spectrum in the range 3.3 GeV/c2 <MJ/ψπ+ < 6.0 GeV/c2 excluding the signal region.
The fitted function is shown as a line in Fig. 4a. The number of expected background events in the signal
region is 49.7±3.4 while 51 is observed. The upper limit NUL

Zc
for the number of produced Z±c (3900)

events corresponding to a confidence level of CL= 90% is then determined from the expression∫ NUL
Zc

0
g(NZc) = 0.9 (5)



to be NUL
Zc

= 15.1 events.

For the absolute normalization of the Z±c (3900) production rate we estimated for the same data sample
the number of exclusively produced J/ψ mesons from incoherent exclusive production in

γ N → J/ψ N, (6)

the cross section of which is known for our range of √sγN [17]. The same selection criteria are applied
for the exclusive production of the J/ψ mesons

µ+ N → µ+J/ψ N, (7)

and Z±c (3900) hadrons. To separate J/ψ production and non-resonant production of dimuons, the
dimuon mass spectrum is fitted by a function consisting of three Gaussian (two to describe the J/ψ
peak and one for the ψ(2S) peak) and an exponential background under the peaks (see Fig. 2a). Finally
18.2× 103 events of exclusive J/ψ production remain in the sample. The distribution of the squared
transverse momentum p2

T of the J/ψ (Fig. 4b) for the exclusive sample is fitted by a sum of two expo-
nential functions in order to separate the contributions from exclusive coherent production on the target
nuclei and exclusive production on (quasi-)free target nucleons. The contribution from coherent pro-
duction is found to be 30.3% for the 6LiD target and 38.9% for NH3 target (36.1% averaged over the
sample). The amount of nonexclusive events in the exclusive incoherent sample is estimated to be about
30± 10%. Since only the charged pion distinguishes the final state of process in Eq. (2) from the final
state of the process in Eq. (6), the ratio Ra of their acceptances is in a first approximation equal to the
acceptance for this pion. Based on previous COMPASS measurements and Monte Carlo simulations this
ratio is about Ra = 0.5, averaged over all setup and target configurations. Thus we obtain the result

BR(Z±c (3900)→ J/ψπ±)×σγ N→Z±c (3900) N

σγ N→J/ψ N

∣∣∣
〈√sγN 〉=13.8 GeV

< 3.7×10−3, (8)

whereBR denotes the branching ratio for theZ±c (3900)→ J/ψπ± decay channel. Assuming σγ N→J/ψ N =
14.0±1.6stat±2.5syst nb as measured by the NA14 Collaboration for

√
sγN = 13.7 GeV [17], the result

can be presented as

BR(Z±c (3900)→ J/ψπ±)×σγ N→Z±c (3900) N

∣∣∣
〈√sγN 〉=13.8 GeV

< 52 pb. (9)

The upper limits for the ratio of the cross sections in intervals of√sγN are presented in Table 1.

The result shown in Eq. (9) can be converted into an upper limit for the partial width ΓJ/ψπ of the
decay in Eq. (1) based on the VMD model. According to Ref. [14] the cross section for the reaction in
Eq. (2), averaged over the measured √sγN distribution for J/ψπ± events is about ΓJ/ψπ×430 pb/MeV
for Λπ = 0.6 GeV, a free parameter of the πNN vertex, yielding

ΓJ/ψπ

Γtot
×σγ N→Z±c (3900) N =

Γ2
J/ψπ×430 pb/MeV

Γtot
< 52 pb. (10)

Assuming Γtot = 46 MeV/c2, we obtain an upper limit ΓJ/ψπ < 2.4 MeV/c2.

We estimate the systematic uncertainty of the result in Eq. (8) to be about 30%, where the main contribu-
tions come from limited knowledge of the acceptance ratio a, since the energy spectrum of the expected
Z±c (3900) events is unknown, from systematic effects in estimation of nonexclusive contamination in
the reference J/ψ sample and from the background description in the signal range of the J/ψπ spectrum.
The uncertainty of σγ N→J/ψ N measurement by NA14 contributes to Eq. (9), so the total systematic
uncertainty of this result is about 35%.
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Fig. 3: Kinematic distributions for the reactions Eq. (7) (yellow, upper curves) and Eq. (3) (green, lower curves)
(a) Q2, (b)√sγN .
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Fig. 4: (a) Mass spectrum of the J/ψπ± state. The fitted function is shown as a line. (b) p2
T distributions for

exclusively produced J/ψ mesons off the 6LiD (blue, lower) and NH3 (red, upper) targets.

Table 1: Upper limits for Z±c (3900) production rate for intervals of√sγN .

Interval 〈√sγN 〉, GeV BR(J/ψπ)×σZc/σJ/ψ, 10−3

Full 13.8 3.7
√
sγN < 12.3 GeV 10.8 10

12.3 GeV<
√
sγN < 14.1 GeV 13.2 3.7

14.1 GeV<
√
sγN < 15.4 GeV 14.7 4.5

15.4 GeV<
√
sγN 16.4 6.0



No signal of exclusive photoproduction of the Z±c (3900) state and its decay into J/ψπ± was found.
Therefore an upper limit was determined for the product of the cross section of this process and the
relative Z±c (3900)→ J/ψπ± decay probability normalized to the cross section of incoherent exclusive
photoproduction of J/ψ mesons. In caseZ±c (3900) is a real hadron state, the decay channelZ±c (3900)→
J/ψπ± can not be the dominant one. This result is a significant input to clarify the nature of theZ±c (3900)
state.

We gratefully acknowledge the support of the CERN management and staff as well as the skills and
efforts of the technicians of the collaborating institutions.
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