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Abstract

The COMPASS experiment recently discovered a new isovector resonance-like signal with axial-
vector quantum numbers, the a1(1420), decaying to f0(980)π . With a mass too close to and a width
smaller than the axial-vector ground state a1(1260), it was immediately interpreted as a new light
exotic meson, similar to the X , Y , Z states in the hidden-charm sector. We show that a resonance-like
signal fully matching the experimental data is produced by the decay of the a1(1260) ground state
into K∗(Kπ)K̄ and subsequent rescattering through a triangle singularity into the coupled f0(980)π
channel. The amplitude for this process is calculated using a novel method based on partial-wave
projections. For the first time, the triangle singularity model is fitted to the partial-wave data of the
COMPASS experiment. Despite having less parameters, this fit shows a slightly better quality than
the one using a resonance hypothesis and thus eliminates the need for an additional resonance in
order to describe the data. We thereby demonstrate for the first time that a resonance-like structure
in the experimental data can be described by rescattering through a triangle singularity, providing
evidence for a genuine three-body effect.
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Quantum Chromodynamics (QCD) is generally accepted as the fundamental quantum-field theory of
the strong interaction, one of the four forces known in nature. How exactly the spectrum of bound states
(hadrons) emerges from the underlying interaction between quarks and gluons is, however, not yet under-
stood. The main difficulty is the rise of the strong coupling at the low energy scale relevant for hadrons,
which makes the theory unsolvable with perturbative methods. The quark model is an approach that
describes the properties of hadrons by effective degrees of freedom represented by constituent quarks;
mesons are assumed to be bound states of quarks and antiquarks in an attractive potential with a linearly
rising confining part [1, 2]. Although the quark model describes many of the observed mesons, it seems
that the spectrum is notably richer: there is growing experimental evidence for bound states beyond the
constituent-quark model. Such states are commonly called exotic [3–8]. In addition to mapping out the
full spectrum predicted by models and, more recently, by lattice gauge theory [9], the search for such
exotic states drives the current interest in hadron spectroscopy.

The study of single-diffractive reactions with a high-energy meson beam, as performed by the COM-
PASS experiment at the CERN SPS [10, 11], is a natural way to investigate meson excitations (for a
recent review, see Ref. [12]). In such reactions, at high energies commonly described by the exchange of
a Pomeron IP, the incoming beam particle is excited by the strong interaction with a proton target. Regge
theory then allows us to factorize off the target vertex, such that we only consider the beam vertex. Al-
though the produced excited system immediately decays, the reaction products unveil the properties of
the excitation. An unprecedented amount of data comprising almost 50 million events for the reaction
π−+ p→ π−π−π++ p was used by COMPASS to perform a detailed analysis of πJ and aJ mesons with
isospin I = 1 and G-parity G = −1. The Partial-Wave Analysis (PWA) technique in connection with
the isobar model was used to separate excitations with different quantum numbers, see Ref. [12, 13] for
details. Individual waves are labeled JPC Mε ξ π L, where J is the total angular momentum of the 3-pion
system, P the spatial and C the charge-conjugation parity. Note that although the charged states studied
here are not eigenstates of the C operator, they are commonly labelled with the C-parity of the neutral
member of the corresponding isospin multiplet, as inferred from G =C(−1)I . The quantum number M
labels the projection of the spin J onto the direction of the beam in the rest frame of π−π−π+, and ε

indicates the reflection symmetry with respect to the production plane. At the high center-of-momentum
energies of the experiment, the reflectivity quantum number ε corresponds to the naturality of the ex-
changed particle and is hence always positive for Pomeron exchange. The orbital angular momentum
between the neutral system of two pions (isobar) and the remaining pion is denoted by L. The symbol ξ

labels the assumed isobar, i.e. the interaction amplitude in the neutral ππ-subchannel.

A PWA including 88 waves in total was performed separately in 100 bins of the 3π invariant mass
m3π and 11 bins of the reduced 4-momentum transfer squared t ′ [13]. The results are summarized in
Fig. 1(a), where we show the intensities of selected waves as a function of m3π , summed over all t ′ bins.
Among many important observations, an exotic resonance-like signal with quantum numbers JPC = 1++

was found in the 1++ 0+ f0π P-wave as a clear peak at 1.4GeV/c2 [14] (see inset of Fig. 1(a)). The
resonance-like behavior was corroborated by the observed phase motion, i.e. a mass-dependent relative
phase with respect to several other reference waves. Extensive studies, also using the “freed-isobar"
method [15], undoubtedly confirmed the signal and proved that it was not an artefact of any particular
isobar parameterization [13]. In previous experiments, the resonance content of this wave was never
analyzed because of its very small contribution. Following the PDG convention, the signal was called
a1(1420) according to its quantum numbers IG(JPC) = 1−(1++). It was immediately realized that it
could not be an ordinary quark-model meson resonance: (i) with about 150MeV/c2, its width is much
smaller than the width of the axial-vector ground state a1(1260) of about 500MeV/c2; (ii) the signal
is separated from the ground state by only about 150MeV/c2, whereas the energy difference between
different radial excitation levels is typically 400MeV/c2 as estimated based on the slope of the radial
excitation trajectory [16]; (iii) so far, the a1(1420) has been seen only in the f0(980)π final state.
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Fig. 1: (a) Intensities of selected waves from the PWA of the reaction π−+ p→ π−π−π++ p [13]. The inset
shows a zoomed view of the 1++0+ f0π P-wave. The colored bar on the left indicates the contributions of the
different waves to the total intensity. (b) Diagrams showing possible contributions to the ρ(770)π and f0(980)π
production amplitudes. The Pomeron is labelled IP, a1 refers to the axial-vector ground state a1(1260), and a2 to
the tensor ground state a2(1320). The framed diagram shows the dominant contribution to the a1(1420) signal via
the triangle diagram, as discussed in the present paper.

Various interpretations followed the a1(1420) observation [17–21]. They either do or do not require
a new resonance. Resonances are consistently introduced in general scattering theory [22], where the
reaction amplitude is an analytic function of the total energy squared s that is regarded as a complex
number; they are found as poles on the unphysical sheet of the complex s-plane attached to the real axis
from below. In explanations involving either diquark-antidiquark molecules or tightly bound tetraquarks,
the observed signal, i.e. peak and phase motion, is caused by a pole-type singularity located on the closest
sheet. Alternatively, a so-called triangle singularity [22, 23] was proposed as mechanism behind the
a1(1420) signal [17]. Here, a logarithmic branch point caused by a coupled-channel effect, particularly
by the K∗K̄- f0π interaction, is located near the physical region on the closest unphysical sheet. A test
of this interpretation is the subject of the present paper. For completeness, we mention an alternative
model [21, 24] that does not require a new resonance pole, but instead combines resonant and non-
resonant production mechanisms. The latter were shown in the past [25, 26] to be responsible for a
large fraction of the reaction rate. In this model, the amplitude is made consistent with the requirement
of probability conservation, i.e. unitarity of the scattering matrix. Applying it to the 1++ sector in
COMPASS kinematics, a peak in the 1++ 0+ f0π P-wave can be produced by specific adjustment of
the relative production strengths between the 1++0+ ρπ S and the 1++ 0+ f0π P-waves. However, the
generated phase motion between these waves at the position of the a1(1260) resonance is inconsistent
with observation.

In the following, we briefly introduce the Triangle Singularity (TS) model and present a new method for
the calculation of the amplitude, which goes beyond Ref. [17] and in principle allows us to include also
higher-order rescattering effects. The full details of the calculation will be published in a forthcoming
paper.

The dynamics of a hadronic three-body system is commonly understood in terms of quasi two-body
interactions with subchannel resonances ξ decaying further into pairs of final-state particles. Often,
however, the same final state can be obtained through several decay chains when the two-particle inter-
action is non-negligible for different particle pairs [27, 28]. Different decay chains are coherent, hence
they interfere. Moreover, the unitarity of the scattering matrix enforces a consistency relation between
the different chains [29–31]. This relation makes the lineshape of the two-particle resonances in a system
of three particles dependent on the dynamics in the other pair [32–35]. An equivalent way of describing
this interrelation between pair-wise interactions is to state that the cross-channel two-body resonances in
the ππ , Kπ and K̄K systems rescatter to one another, thereby modifying the original undistorted line-
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shapes. In the particular case considered in this paper, the dominant cross-channel resonances involved
are K∗(892) and f0(980). In addition to affecting the lineshapes, the probabilities for a three-body res-
onance decaying to one or another channel may be redistributed due to final-state interaction [36, 37].
This effect is strongly enhanced for certain kinematic conditions [22, 38] and produces the observed
resonance-like signal (TS) in the case considered here.

We find that the presence of the K∗(892) resonance (hereafter referred to as K∗) in the KK̄π channel
drastically affects the f0(980)π channel, since the rescattering between K∗ → Kπ P-wave and KK̄ →
f0(980)→ ππ S-wave occurs with all intermediate particles being almost on their mass shell for m3π ≈
1.4GeV/c2, i.e. slightly above the K∗K̄ threshold [17]. This effect does not disturb the narrow lineshape
of the f0(980), but it leads to a significant redistribution of the a1(1260) decay probabilities. The orig-
inally negligible f0(980)π P-wave decay channel is populated by the rescattering from the K∗K̄ decay
locally around 1.4GeV/c2.

For the calculation of the TS amplitude we use a novel partial-wave-projection method based on the
requirement of unitarity applied to the partial-wave projection of the three-body transition amplitude [39].
This leads us to the Khuri-Treiman equation [29–31] for the production amplitude F{1}W of a three-particle
system (123) with a given set of quantum numbers W , invariant mass squared s ≡ m2

3π
, and the isobar

formed by particles 2 and 3 (hereafter labelled {1} using circular indices) with invariant mass squared
σ{1} ≡ (p2 + p3)

2:

F{1}W (s,σ{1}) =C{1}W (s) (1)

+∑
ω

K{1}W (s,σ{1})
2π

∫
∞

σth,W

ρ(σ)F̂{1}W,ω(s,σ)

K{1}W (s,σ)(σ −σ{1}− iε)
dσ .

Here, the indices W and ω refer to the full set of quantum numbers labeling a given wave. For the
f0π P-wave considered in this paper, K{1}W (s,σ{1}) is a kinematic-singularity factor equal to the f0π

break-up momentum in the center-of-momentum frame. The term C{1}W (s) parameterizes the three-body
production dynamics and the decay into the given final state W . It includes the direct production of
the a1(1260) resonance and a term for the non-resonant production that is further described below. The
sum runs over all possible cross channels with quantum numbers ω . In the dispersion integral, ρ(σ) is
the 2-body phase-space factor, and F̂{1}W,ω(s,σ) is the projection of the cross channel {3}, i.e. the isobar
formed by particles 1 and 2, with quantum numbers ω onto channel {1} with quantum numbers W .
We do not expect isobars in channel {2}, formed by e.g. K−π−, K0π− or π−π−. Figure 2 shows the
m3π dependence of the f0(980)π isobar production amplitude for different individual cross channels ω .
The blue lines represent the TS in the KK̄π channel with the K∗ resonance. The full blue line is the
result of the new partial-wave projection method, Eq. (1), taking into account the spins of all particles
involved. The dashed blue line labeled “(scalar)”, as well as all other dashed lines, are obtained by
calculations using the Feynman method from Ref. [17], neglecting the spins of the involved particles.
The curves shown in dashed gray correspond to the rescattering effects of the various ππ resonances
in the cross channel. For the calculation we assume that modifications of the lineshapes of the cross-
channel resonances due to rescattering are negligible. It can be seen that the K∗K̄ channel produces a
narrow peak and a strong phase motion at the mass of the a1(1420) due to the TS being very close to
the physical region, while all other channels including the direct decay and the non-resonant background
(Bgd) manifest themselves in a broad bump and a slow phase motion.

In order to perform a fit of the TS model to the COMPASS spin-density matrix elements (SDMEs) [41],
we choose the three waves depicted in Fig. 1(b), which constitute the dominant contributions to the ρπ

and f0π production amplitudes: (i) the 1++0+ ρπ S-wave describes the source of the rescattering process,
since its largest contribution comes from the a1(1260). This wave also contains a significant contribution
from non-resonant “Deck”-like processes [26]; (ii) the 1++0+ f0π P-wave contains the a1(1420) signal;
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Fig. 2: (a) Intensities and (b) phases of the f0π P amplitude produced from different sources. The m3π dependence
is shown for the f0(980) subchannel invariant mass fixed to the nominal resonance mass of 990MeV/c2. See text
and Refs. [13, 40] for details on the calculations and the descriptions of the parameterizations of the isobar and
resonance amplitudes. The intensities in panel (a) are relative to the maximum intensity of the K∗K̄ channel, with
the couplings in each vertex set to unity. Note that the intensity of the K∗K̄ triangle graph (blue lines) was scaled
down by a factor of 20. In panel (b) we also include the phase from Ref. [21] (purple line). Its inflection point is at
a mass of approximately 1.25GeV/c2. See text for details on the different curves.

(iii) the 2++1+ ρπ D-wave exhibits a clean a2(1320)-resonance and is included in order to fix the relative
phases and stabilize the fit. In general, there are two components for each wave in the model: a resonance
amplitude, i.e. a propagator that contains a pole (in this case either the a1(1260) or the a2(1320)), and
a component with t-channel π exchange accounting for non-resonant processes. We parameterize the
a1(1260) propagator by a relativistic Breit-Wigner amplitude with energy-dependent width saturated by
the ρπ decay channel [40]. For the resonance part of the ρπ D-wave we employ the a2(1320) propagator
parameterized by a Breit-Wigner amplitude with dynamical width including the ρπ (80%) and ηπ (20%)
channels, as discussed in Ref. [40]. The non-resonant background is added coherently to each wave. We
use an empirical parameterization given by (m3π/m0− 1)b exp[−(c0 + c1t ′+ c2t ′2)p̃2], where p̃ is an
effective break-up momentum for the decay into ξ π at the given m3π value, taking into account the
finite width of the isobar ξ and the Bose symmetry of the system, and m0 = 0.5GeV/c2 (see Eq. (27) in
Ref. [40]). For the model calculations, the t ′ value is fixed to the lower edge of the respective bin. For the
f0π P-wave, the resonance part of the production amplitude is modified by the K∗K̄→ f0π-rescattering
via the TS. As the direct decay of the a1(1260) to the f0π final state has a very slow phase motion and
a similar shape as the phenomenological parameterization of the non-resonant part (compare the red and
green curves in Fig. 2), the fit cannot distinguish between the two components. The direct decay of the
a1(1260) to f0π is hence omitted.

The free parameters of the model, i.e. the t ′-dependent complex couplings, the background parameters
b and ci, as well as the t ′-independent Breit-Wigner resonance parameters, are determined by a fit to the
results of the PWA in m3π and t ′ bins. We note that the TS amplitude is parameter-free. As explained in
more detail in Ref. [40], the data points yi to be fitted are the intensity and the real and imaginary parts
of the interference terms for the 3 selected waves inside the chosen m3π ranges (indicated in Fig. 3) for
all 11 t ′ bins. The fit is performed by minimizing the sum of the squared differences between data points
yi (SDMEs) and model prediction ŷi, weighted by the inverse squared statistical uncertainties:

R2 = ∑
i

(yi− ŷi)
2

σ2
i

. (2)

Since not all of the data points used in the fit are independent quantities, the quantity R2 is not a strict
χ2; its use is nevertheless advantageous, since all waves enter the R2 function in a symmetric manner.

Figure 3 shows the result of the TS model fit in the lowest t ′ bin, selecting only the f0π P-wave (full
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(a) (b) (c)

Fig. 3: Results of the fit with the TS model (solid lines) and the Breit-Wigner model (dashed lines) to the wave
with the a1(1420) resonance-like signal. The fit range is indicated by the color saturation of data points and
lines. (a) intensity of the 1++ 0+ f0π P-wave. The complete fit model (red) is decomposed into its signal (blue)
and background (green) contributions. (b) relative phase between the 1++0+ ρπ S-wave and the 1++ 0+ f0π P-
wave. Since our simple background model has a constant phase, we omit the separation of signal and background
contributions. (c) Argand diagram. The red dots on the TS-model curve correspond to the indicated m3π values in
units of GeV/c2.

lines). The fit results for all three waves in all 11 t ′-bins can be found in Ref. [42]. Panel (a) shows the
intensity of the f0π P-wave and panel (b) the relative phase to the ρπ S-wave, both as a function of m3π .
The resonance-like behavior of the TS amplitude is most evident from the circle in the Argand diagram
in panel (c). The non-resonant background (green arrows) helps to slightly adjust the position of the
circle. Since the phase of the background component does not change with m3π , all green arrows are
parallel.

In order to evaluate the quality of the TS model fit, we also perform a fit to the data using a simple Breit-
Wigner description of the a1(1420) signal instead of the TS amplitude. This is accomplished by replacing
the TS parameterization of the f0π P-wave by a relativistic Breit-Wigner amplitude with free mass and
width parameters assuming the a1(1420) being a genuine new resonance. We use a constant-width
parameterization since further decay modes of this hypothetical new particle are unknown. Figure 3
shows that the fits with the Breit-Wigner model (dashed) and the TS model (solid) are of very similar
quality. Both models are capable of describing the intensities as well as the corresponding interference
terms. The advantage of the TS model is that it has two fit parameters less, since it does not require a
new particle with corresponding mass and width. For a quantitative comparison, one can use a quantity
defined in analogy to Eq. (2). The biggest contribution comes from the ρπ S and ρπ D-waves. Since the
description of these two waves is very similar in both fit models, we can omit them for the comparison
of the fit quality. In addition, we can exclude one of the two remaining phases of the interferences,
since they depend linearly on one another. Defining R2

red as the reduced weighted sum of the remaining
residuals squared divided by the number of degrees of freedom, where only the fit parameters specific to
the f0π P-wave are taken into account, we arrive at a value of R2

red,TS = 4.8 for the TS and R2
red,BW = 5.2

for the Breit-Wigner model, suggesting a slightly better description of the a1(1420) signal by the TS
model.

In order to study the stability of the result, we investigate a wide range of sources of systematic un-
certainties, both with respect to changes of the model and to changes of the data points (SDMEs). We
perform fits where the data points yi are varied according to systematic studies for the PWA in bins of
mass and t ′, published in Ref. [13]. These include using a smaller wave set, removing negative reflectiv-
ity waves, relaxing the event selection, using rank 2 instead of rank 1, or changing the parameterization
of the f0(980). In an additional study, we use the result of a statistical re-analysis of [13] applying
the bootstrap technique [43]. Also, we consider several variations in the fit model for the TS: (i) a
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fit with non-Bose-symmetrized phase space; (ii) neglecting the spins of the particles involved (similar to
Ref. [17]); and (iii) including the excitations a1(1640) and a2(1700) in the ρπ S and ρπ D waves, respec-
tively (mass and width fixed to the values from the PDG [1]). We see that the TS model systematically
yields a slightly smaller R2

red than the Breit-Wigner model [42].

In summary, we have shown that the recently discovered resonance-like signal with axial-vector quantum
numbers, the a1(1420) observed by COMPASS in the decay to f0(980)π , can be fully explained by the
decay of the ground-state a1(1260) into K∗K̄ and subsequent rescattering through a triangle singularity
into f0(980)π . To our knowledge, this is the first time that a rescattering model is fitted successfully
to experimental data, mimicking a resonance-like signal. It appears that the fit quality of the TS model
in terms of R2

red is even slightly better than that of the Breit-Wigner model, also throughout almost all
our systematic studies. This result suggests that there is no need for the existence of a new genuine a1
resonance in order to describe the data. The effect due to rescattering via the Triangle Singularity, which
is expected to be present, is sufficient to explain the observation.
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Supplemental material

.1 Systematic studies

We investigate several sources of systematic uncertainties including variations of the fit model and un-
certainties of the mass-independent PWA. We perform fits where the data points (SDMEs) yi in Eq. (2) of
the main text are varied according to systematic studies for the PWA in bins of mass and t ′ (see Ref. [13]).
Figure .1 compares the quantity R2

red, as defined in Eq. (2), for the TS model and the model using a sim-
ple Breit-Wigner amplitude for the a1(1420), for the various studies. These include using a smaller wave
set (“53 waves”), removing negative-reflectivity waves (“no neg. waves”), relaxing the event selection
(“coarse ev. sel.”), using rank 2 instead of rank 1 (“rank 2”), and changing the parameterization of the
f0(980) (“ f0(980)BW”, “(ππ)S K1”). In an additional study, we use the result of a statistical re-analysis
of [13] applying the bootstrap technique [43] (“bootstrap”). Also, we consider several variations of the fit
model for the TS: (i) a fit with non-Bose-symmetrized phase space (“non-sym. ph. sp.”); (ii) neglecting
the spins of the particles involved (similar to Ref. [17], “scalar TS”); and (iii) including the excitations
a1(1640) and a2(1700) in the ρπ S and ρπ D waves, respectively (masses and widths fixed to the values
from the PDG [1], “excited res.”). We see from Fig. .1 that the TS model systematically yields a slightly
smaller R2

red than the Breit-Wigner model.

Fig. .1: R2
red,BW for the Breit-Wigner model vs. R2

red,TS for the TS model. See main text for details on their
definition. The main fit shown in Fig. 3 is represented by the red cross, the gray dashed line indicates R2

red,BW =

R2
red,TS. Blue crosses correspond to systematic studies using different data points and green dots show the fit

results with a modified model of the f0π P wave. The result of the bootstrap analysis is shown by the filled ellipses
which cover 68%, 95%, and 99% of the obtained sample, respectively; the fit to the bootstrap-sample mean is
represented by the brown point.
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.2 Fit result for all t ′ bins

Figures .2 – .12 show the spin-density matrix elements (SDMEs) of the three waves selected for the
model fit (data points) and the fit results of the TS model for all t ′-bins. The full fit model (red) is
decomposed into signal (blue) and background (green) as described in the main text. The intensities are
plotted on the diagonal and the complex phase of the interference parts on the off-diagonal. The 3 rows
as well as the 3 columns correspond to the 1++0+ρπS, 1++0+ f0πP, and 2++1+ρπD-waves.
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Fig. .2: Spin-density matrix elements of the 3 waves selected for the TS model fit and the corresponding fit results,
both shown for the first (lowest) bin of t ′. The SDMEs as a function of m3π are visualized in the form of a 3× 3
upper-triangular matrix of graphs with the partial-wave intensities on the diagonal and the relative phases between
the partial waves on the off-diagonal. Black crosses correspond to the result of the PWA in bins of m3π and t ′ from
Ref. [13] with statistical uncertainties indicated by vertical lines. The data are overlaid by the TS model curve
(red), the contributions from signal (blue) and non-resonant background (green). The m3π fit range is indicated by
the color saturation of data points and fit result. Regions indicated by lower color saturation were not included in
the fit; the model curves in these regions are extrapolations.
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Fig. .3: Same as Fig. .2, but for t ′-bin 2.
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Fig. .4: Same as Fig. .2, but for t ′-bin 3.
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Fig. .5: Same as Fig. .2, but for t ′-bin 4.
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Fig. .6: Same as Fig. .2, but for t ′-bin 5.
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Fig. .7: Same as Fig. .2, but for t ′-bin 6.
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Fig. .8: Same as Fig. .2, but for t ′-bin 7.
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Fig. .9: Same as Fig. .2, but for t ′-bin 8.
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Fig. .10: Same as Fig. .2, but for t ′-bin 9.
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Fig. .11: Same as Fig. .2, but for t ′-bin 10.
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Fig. .12: Same as Fig. .2, but for t ′-bin 11.
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