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First measurement of the Sivers asymmetry for gluons from SIDIS data

Abstract

The Sivers function describes the correlation between the transverse spin of a nucleon and the trans-
verse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of
hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nu-
cleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers
asymmetry for gluons in the same process is presented. The analysis method is based on a Monte
Carlo simulation that includes three hard processes: photon-gluon fusion, QCD Compton scattering
and leading-order virtual-photon absorption process. The Sivers asymmetries of the three processes
are simultaneously extracted using the LEPTO event generator and a neural network approach. The
method is applied to samples of events containing at least two hadrons with large transverse mo-
mentum from the COMPASS data taken with a 160 GeV/c muon beam scattered off transversely
polarised deuterons and protons. With a significance of more than two standard deviations a negative
value is obtained for the gluon Sivers asymmetry. The result of a similar analysis for a Collins-like
asymmetry for gluons is consistent with zero.
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1 Introduction

An interesting and recently examined property of the quark distribution in a nucleon that is polarised
transversely to its momentum is the fact that it is not left-right symmetric with respect to the plane
defined by the directions of nucleon spin and momentum. This asymmetry of the distribution function
is called the Sivers effect and was first suggested [1] as an explanation for the large left-right single
transverse spin asymmetries observed for pions produced in the reaction p↑p→ πX [2–4]. On the basis
of T-invariance arguments the existence of such an asymmetric distribution, known as Sivers distribution
function, was originally excluded [5]. Ten years later it was recognised however that it was indeed
possible [6]. At that time it was also predicted that the Sivers function in semi-inclusive measurements
of hadron production in DIS (SIDIS) and in the Drell-Yan process have opposite sign [7], a property
referred to as “restricted universality”. A few years later the Sivers effect was experimentally observed
in SIDIS experiments on transversely polarised proton targets, first by the HERMES Collaboration [8]
and then by the COMPASS Collaboration [9]. Using the first HERMES data and the early COMPASS
data taken with a transversely polarised deuteron target [10], a combined analysis soon allowed for first
extractions of the Sivers function for u and d-quarks [11–13]. More precise measurements of the Sivers
effect were performed since by the HERMES [14] and COMPASS [15–17] Collaborations, and new
measurements with a transversely polarised 3He target were also carried out at JLab [18, 19]. More
information can be found in recent reviews [20–22].

At this point the question arises whether the gluon distribution in a transversely polarised nucleon is left-
right symmetric or exhibits a Sivers effect similar to the quark distributions. Recently, the issue has been
discussed repeatedly in the literature and the properties of the gluon Sivers distributions have been studied
in great detail [23,24]. While it was found that a non-zero Sivers function implies motion of partons in the
nucleon, presently the connection between the Sivers function and the parton orbital angular momentum
in the nucleon can only be described in a model-dependent way [25]. The correspondence between the
Sivers effect and the transverse motion of partons has been originally proposed by M. Burkardt [26–28].
Hence it is of great interest to know whether there exists a gluon Sivers effect or not.

Presently, little is known on the gluon Sivers function. An important theoretical constraint comes from
the so-called Burkardt sum rule [29]. It states, based on the presence of QCD colour-gauge links, that the
total transverse momentum of all partons inside a transversely polarised proton should vanish. Fits to the
Sivers asymmetry using SIDIS data [13] almost fulfil, within uncertainties, the Burkardt sum rule, leav-
ing little space for a gluon contribution. From the null result of the COMPASS experiment for the Sivers
asymmetry of positive and negative hadrons produced on a transversely polarised deuteron target [10],
together with additional theoretical considerations, Brodsky and Gardner [30] stated that the gluon con-
tribution to the parton orbital angular momentum should be negligible, and consequently that the gluon
Sivers effect should be small. Also, using the so-called transverse momentum dependent (TMD) gener-
alised parton model and the most recent phenomenological information on the quark Sivers distributions
coming from SIDIS data, interesting constraints on our knowledge of the gluon Sivers function were
derived [31] from the recent precise data on the transverse single spin asymmetry AN(p↑p→ π0X) mea-
sured at central rapidity by the PHENIX Collaboration at RHIC [32].

In DIS, the leading-order virtual-photon absorption process (LP) does not provide direct access to the
gluon distribution since the virtual-photon does not couple to the gluon, so that higher-order processes
have to be studied, i.e. QCD Compton scattering (QCDC) and Photon-Gluon Fusion (PGF). It is well
known that in lepton-proton scattering one of the most promising processes to directly probe the gluon
is open charm production, `p↑ → `′cc̄X . This is the channel that the COMPASS Collaboration has
investigated at length in order to measure ∆g/g , the gluon polarisation in a longitudinally polarised
nucleon [33]. Tagging the charm quark by identifying D-mesons in the final state has the advantage that
in the lowest order of the strong coupling constant there are no other contributions to the cross section
and one becomes essentially sensitive to the gluon distribution function. An alternative method to tag
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the gluon in DIS, which has the advantage of higher statistics, has also been developed and used by
COMPASS, i.e. the production of high-pT hadrons [34,35]. In the LP, the hadron transverse momentum
pT with respect to the virtual photon direction (in the frame where the nucleon momentum is parallel to
this direction) originates from the intrinsic transverse momentum kT of the struck quark in the nucleon
and its fragmentation, which both lead to a small transverse component. On the contrary, both the QCDC
and PGF hard processes can provide hadrons with high transverse momentum. Therefore, tagging events
with hadrons of high transverse momentum pT enhances the contribution of higher-order processes.
Nevertheless, although in the high-pT sample the PGF fraction is enriched, in order to single out the
contribution of the PGF process to the measured asymmetry the contributions from LP and QCDC have
to be subtracted [36].

In this letter, the gluon Sivers effect is investigated using COMPASS data collected by scattering a
160 GeV/c muon beam off transversely polarised deuterons and protons. The experimental set-up and
the data selection are described in Section 2. In Section 3 the measurement is described. The details of
the analysis are given in Section 4. The procedure of neural network (NN) training with a Monte Carlo
data sample is shown in Section 5. Section 6 contains the overview of the systematic studies. In Section 7
the results are presented. Summary and conclusions are given in Section 8.

2 Experimental set-up and data samples

The COMPASS experiment uses a fixed target set-up and a polarised muon beam delivered by the M2
beam line of the CERN SPS. The transversely polarised deuteron target used for the 2003 and 2004 data
taking consisted of two oppositely polarised cylindrical cells situated along the beam, each 60 cm long
with a 10 cm gap in between. In 2010 the transversely polarised proton target consisted of three cells:
30 cm, 60 cm and 30 cm long with the central cell oppositely polarised to the downstream and upstream
cell and 5 cm gaps between the cells. During all data taking periods the polarisation was reversed once per
week, in this way systematic effects due to acceptance are cancelled. For the deuteron runs the target was
filled with 6LiD. The 6Li nucleus can be regarded as one quasi-free deuteron and a 4He core. The average
dilution factor fd , defined as the ratio of the DIS cross section on polarisable nucleons in the target to
the cross section on all target nucleons, amounts to 0.36 and includes also electromagnetic radiative
corrections. The average polarisation of the deuteron was 0.50. For the asymmetry measurements on
the proton, NH3 was used as a target. Its average dilution factor fp amounts to 0.15 and the proton
polarisation to 0.80. In both cases, the naturally polarised muon beam of 160 GeV/c was used. The basic
features of the COMPASS spectrometer, as described in Ref. [37], are the same for 2003-4 and 2010 data
taking. Several upgrades were performed in 2005, the main one being the installation of a new target
magnet, which allowed to increase the polar angle acceptance from 70 mrad to 180 mrad.

A crucial point of this analysis is the search for an observable that is strongly correlated with the gluon
azimuthal angle φg. In the LEPTO generator [38], gluons are accessed via PGF with a quark-antiquark
pair in the final state and the fragmentation process is described by the Lund model [39]. As a result of
MC studies, the best correlation is found between φg and φP, where the latter denotes the azimuthal angle
of the vector sum P of the two hadron momenta. For the present analysis, two charged hadrons for each
event are selected. If more than two charged hadrons are reconstructed in an event, only the hadron with
the largest transverse momentum, pT 1, and the one with the second-largest transverse momentum, pT 2,
are taken into account. In order to enhance the PGF fraction in the sample and at the same time the corre-
lation between φg and φP, a further requirement is applied to the transverse momenta of the two hadrons:
pT 1 > 0.7 GeV/c and pT 2 > 0.4 GeV/c. Moreover, the fractional energies of the two hadrons must fulfil
the following conditions: zi > 0.1 (i = 1,2) and z1 + z2 < 0.9, where the last requirement rejects events
from diffractive vector meson production. Hadron pairs are selected with no charge constraint. With this
choice the correlation coefficient is 0.54. The Sivers asymmetry is then obtained as the sine modulation
in the Sivers angle, φXiv = φP−φS. Here φS is the azimuthal angle of the nucleon spin vector.
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The same kinematic data selection is used for both deuteron and proton data. The requirement on photon
virtuality, Q2 > 1 (GeV/c)2, selects events in the perturbative region and the one on the mass of the
hadronic final state, W > 5 GeV/c2, removes the region of the exclusive nucleon resonance production.
The Bjorken-x variable covers the range 0.003 < xB j < 0.7. For the fractional energy of the virtual
photon, y, the limit y > 0.1 removes a region sensitive to experimental biases and the requirement
y < 0.9 rejects events with large electromagnetic radiative corrections.

3 Sivers asymmetry in two hadron production

In order to extract the gluon Sivers asymmetry, µ +N→ µ ′+2h+X events are selected as described in
Section 2. By labelling with the symbol ↑ the cross section associated to a target cell polarised upwards
in the laboratory and by ↓ the cross section of a target cell polarised downwards in the laboratory, the
Sivers asymmetry can be written as

A2h
T (~x,φSiv) =

∆σ(~x,φSiv)

σ(~x)
, (1)

where ~x = (xB j,Q2, pT 1, pT 2,z1,z2), ∆σ ≡ d7σ↑− d7σ↓ and σ ≡ d7σ↑+ d7σ↓. All cross sections are
integrated over the two azimuthal angles φS and φR, where φR is the azimuthal angle of the relative
momentum of the two hadrons, R = P1−P2. The number of events in a φSiv bin is given by

N(~x,φSiv) = α(~x,φSiv)
(
1+ f PT ASiv(~x)sinφSiv

)
. (2)

Here f is the dilution factor, PT the target polarisation and α = anΦσ0 an acceptance-dependent factor,
where a is the total spectrometer acceptance, n the density of scattering centres, Φ the beam flux and σ0
the spin-averaged part of the cross section. From here on, the Sivers asymmetry A2h

T (~x,φSiv) is factorised
into the azimuth-independent amplitude ASiv(~x) and the modulation sinφSiv.
In order to extract the Sivers asymmetry of the gluon, the amplitude of the sinφSiv modulation is extracted
from data. The general expression for the cross section of SIDIS production with at least one hadron in
the final state is well known [40]. It contains eight azimuthal modulations, which are functions of the
single-hadron azimuthal angle and φS. In the absence of correlations possibly introduced by experimental
effects, they are all orthogonal, so that the Sivers asymmetry can either be extracted as the amplitude of
the sinφSiv modulation or one can perform a simultaneous fit of all eight amplitudes. For the case of
heavy-quark pair and dijet production in lepton-nucleon collisions, all azimuthal asymmetries associated
to the gluon distribution function have been recently worked out in Ref. 41. There, the Sivers asymmetry
is defined as the amplitude of the sin(φT −φS) modulation, where φT is the azimuthal angle of the
transverse-momentum vector of the quark-antiquark pair, qT . In our analysis, φT is replaced by φP, due
to its correlation with the gluon azimuthal angle φg, and the Sivers asymmetry is extracted taking into
account only the sin(φP−φS) modulation in the cross section. It has been verified that including in the
cross section the same eight transverse-spin modulations as in SIDIS single-hadron production [40] and
extracting simultaneously all asymmetries gives the same result on the gluon Sivers asymmetry.

In order to determine the Sivers asymmetry for gluons from two-hadron production in SIDIS, it is nec-
essary to assume that the main contributors to muon-nucleon DIS are the three processes (Fig. 1) as
presented in Ref. [38]. This model is successful in describing the unpolarised data. At COMPASS kine-
matics, the leading process appears at zero-order QCD in the total DIS cross section and it is the dom-
inant process, while the other two processes, photon-gluon fusion and QCD Compton, are first-order
QCD processes and hence suppressed. However, their contribution can be enhanced by constraining the
transverse momentum of the produced hadrons, as mentioned above.

Introducing the process fractions R j = σ j/σ ( j ∈ {PGF, QCDC, LP}), the amplitude of the Sivers asym-
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(a) (b) (c)

Fig. 1: Feynman diagrams considered for γ∗N scattering: a) photon-gluon fusion (PGF), b) gluon radia-
tion (QCD Compton scattering), c) Leading order process (LP).

metry can be expressed in terms of the amplitudes of the three contributing processes:

f PT ASiv sinφSiv =
∆σ

σ
=

σPGF

σ

∆σPGF

σPGF
+

σQCDC

σ

∆σQCDC

σQCDC
+

σLP

σ

∆σLP

σLP

= f PT (RPGFASiv
PGF +RQCDCASiv

QCDC +RLPASiv
LP)sinφSiv,

(3)

with σ = ∑ j σ j, ∆σ = ∑ j ∆σ j and f PT ASiv
j sinφSiv = ∆σ j/σ j. The determination of R j is done on an

event-by-event basis by using the neural networks (NN) trained on Monte Carlo data as described in
Section 5.

4 Asymmetry extraction using the methods of weights

The method adopted in the present analysis was already applied to extract the gluon polarisation from
the longitudinal double-spin asymmetry in the SIDIS measurement of single-hadron production [36].
Both for the deuteron data (two target cells) and the proton data (three target cells), four target con-
figurations can be introduced. In the case of the two-cell target: 1 - upstream, 2 - downstream, 3 -
upstream′, 4 - downstream′. In the case of the three-cell target: 1 - (upstream+downstream), 2 - centre,
3 - (upstream′+downstream′), 4 - centre′. Here upstream′, centre′ and downstream′ denote the cells af-
ter the polarisation reversal and configuration 1 has the polarisation pointing upwards in the laboratory
frame. Decomposing the Sivers asymmetry into the asymmetries of the contributing processes (Eq. (3))
and introducing the Sivers modulation β t

j(~x,φSiv) = R j(~x) f (~x)Pt
T sinφSiv, which is specific for process j,

one can rewrite Eq. (2):

Nt(~x,φSiv) = α
t(~x,φSiv)

(
1+β

t
PGF(~x,φSiv)ASiv

PGF(~x)

+β
t
QCDC(~x,φSiv)ASiv

QCDC(~x)+β
t
LP(~x,φSiv)ASiv

LP(~x)
)
,

(4)

where t = 1,2,3,4 denotes the target configuration.

In order to minimise statistical uncertainties for each process, a weighting factor is introduced. It is
known [42] that the choice ω j = β j for the weight optimises the statistical uncertainty but variations of
the target polarisation PT in time may introduce a bias to the final result. Therefore, the weighting factor
ω j ≡ β j/PT is used instead. Each of the four equations (4) is weighted three times with ω j depending on
the process j ∈ {PGF, QCDC, LP} and integrated over φSiv and ~x, yielding twelve observed quantities
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qt
j:

qt
j =

∫
d~xdφSivω j(~x,φSiv)Nt(~x,φSiv)

= α̃
t
j

(
1+{β t

PGF}ω j

{
ASiv

PGF
}

βPGFω j
+{β t

QCDC}ω j

{
ASiv

QCDC
}

βQCDCω j
+{β t

LP}ω j

{
ASiv

LP
}

βLPω j

)
, (5)

where α̃ t
j is the ω j-weighted acceptance-dependent factor. The quantities {β t

i }ω j and {ASiv
i }β t

i ω j are
weighted averages, where the weight factor is denoted in the subscript.1

The acceptance factors α̃ t
j cancel when for asymmetry extraction one uses the double ratio

r j :=
q1

jq
4
j

q2
jq

3
j

(6)

as the data taking was performed such that α̃1
j α̃4

j /α̃2
j α̃3

j = 1. If this condition is not fulfilled, false asym-
metries may occur. It is checked that this is not the case (see Section 6).

In the analysis, the quantities q j and {β t
i }ω j are approximated as follows:

qt
j ≈

Nt

∑
k=1

ω
k
j , (7)

{β t
i }ω j ≈

Nt

∑
k=1

β
t,k
i ωk

j

Nt

∑
k=1

ωk
j

. (8)

The latter approximation holds for small observed raw asymmetries, i.e. ωA� 1. In order to avoid
numerical inconsistencies in Eq. (8) due to a zero-pole when integrating over the full range of φSiv,2 two
bins in φSiv ([0;π], [π;2π]) are introduced. In the aforementioned three double ratios given in Eq. (6)
only asymmetries are unknown. However, in order to solve the system of equations one needs to assume
that the weighted asymmetry for a given process i is the same for the three different weights ω jβi, i.e.
{Ai}βiωPGF = {Ai}βiωQCDC = {Ai}βiωLP . This means that the values of ω j and Ai must be uncorrelated. For
example, since ω j is proportional to R j, which strongly depends on the hadron transverse momentum,
one has to use a kinematic region where the asymmetries Ai are expected to be independent of pT . Under
these assumptions, the number of unknown weighted asymmetries is three, which exactly corresponds to
the number of equations of type (6). These equations are solved by a χ2 fit that includes simultaneously
both bins in φSiv.

Assuming that Ai can be approximated by a linear function of xi and that xi is not correlated with ω j,
results in

{Ai}βiωi = Ai({xi}βiωi). (9)

This approximation allows to interpret the obtained results as an asymmetry value measured at the
weighted value of xi. For each process, the weighted value of xi is obtained from MC using the rela-

1{β}ω =
∫

αβωd~xdφSiv∫
αωd~xdφSiv

, {A}βω =
∫

Aαβωd~xdφSiv∫
αβωd~xdφSiv

2 Note that ωk
j , which contains sinφSiv, is integrated in the region 0 to 2π .
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tion

{xi}βiωi =

Ni

∑
k=1

xk
i β k

i ωk
i

Ni

∑
k=1

β k
i ωk

i

. (10)

Here, Ni is the number of events of type i in MC data. The assumption that the values of xi are not
correlated with ω j, which allows us to consider only {xi}ωiβi , was verified using MC data. The details of
the analysis are given in [43].

5 Monte Carlo optimisation and Neural Network training

The present analysis is very similar to the one used for the ∆g/g extraction from high-pT hadron
pairs [35] and single hadrons [36]. For the NN training with custom input, output and target vector
the package NetMaker [44] is used. The NN is trained with a Monte Carlo sample with process iden-
tification. As input vector the following six kinematic variables are chosen: xB j,Q2, pT 1, pT 2, pL1, pL2.
The latter two are the longitudinal components of the hadron momenta. The trained neural network is
applied to the data by taking the vector of the aforementioned six variables, and its output is interpreted
as probabilities that the given event is a result of one of the three contributing processes. Hence the
simulated distributions of these variables need to be in agreement with the corresponding distributions in
the data samples.

Using the LEPTO generator (version 6.5) [38], two separate MC data samples were produced to simulate
the deuteron and proton data. The generator is tuned to the COMPASS data sample obtained with
the high-pT hadron-pair selection as described in Ref. [35]. The MSTW08 parameterisation of input
PDFs [45] was chosen as it gives a good description of the F2 structure function in the COMPASS
kinematic range and is valid down to Q2 = 1 (GeV/c)2. Electromagnetic radiative corrections [46] were
applied as a weighting factor to the MC distributions shown in Figures 2 and 3 but not in the MC samples
used in NN training. This difference was studied and it was estimated to be negligible.

The generated events were processed by COMGEANT, the COMPASS detector simulation program
based on GEANT3. The MC samples for the proton and deuteron data differ in the target material and in
the spectrometer set-up. The FLUKA package [47] is used in order to simulate secondary interactions.
As the next step, the COMPASS reconstruction program CORAL was applied. The same data selection
as for real events was used for MC data. Figures 2 and 3 show the comparison between experimental
and MC data for the case of the deuteron and proton data, respectively.

The main goal of the NN parameterisation is the estimation of the process fractions R j. In the typical
case of signal and background separation, the expected NN output would be set to one for the signal and
zero for the background. The output value returned by the NN would then correspond to the fraction of
signal events in the sample in the given phase space point of the input parameter vector. In the present
analysis, the process fractions were estimated simultaneously. In order to have a closure relation on the
process probabilities, the sum of them must add up to one, hence only two independent output variables
from the NN are needed. The estimation of the process fractions R j from the NN output is accomplished
by assigning to each event the probabilities PPGF

NN , PQCDC
NN and PLP

NN. The distribution of the NN output
after training is shown in Fig. 4 on the “Mandelstam representation”, i.e. as points in an equilateral
triangle with unit height. Points outside of the triangle refer to one estimator being negative, which is
possible because in the training the estimators are not bound to be positive. The direct separation of the
PGF process using this distribution is statistically less efficient than weighting each event by the three
probabilities obtained from the NN output values. These probabilities are used as values of the process
fractions (RPGF, RQCDC and RLP) in the data analysis described in Section 4.

For the validation of the NN training, a statistically independent MC sample is used to check how the NN
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Fig. 2: Comparison of distributions of kinematic variables between experimental and MC high-pT

deuteron data.
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and PMC is the true fraction of each process from MC in a given PNN bin. Bottom panels: Difference
PMC−PNN per bin.

works on a sample different from the one used for the training. In each bin of PNN (the value assigned
to every MC event by the trained NN), the true fraction obtained from LEPTO based on the process ID,
PMC, is calculated. The results for the NN trained with a MC sample for the proton data are presented in
Fig. 5. Altogether, the agreement between PNN and PMC for all three processes is satisfactory. However,
for the two last bins of PGF, the two last bins of QCDC and the last bin of LP the neural network output
does not coincide with the true fraction of the given process. This discrepancy concerns a small part of
the event sample and is included as a part of the MC-dependent systematic uncertainty. Because of the
good agreement between MC and real data, it is assumed that the fractions in Eq. 3 can be taken from
the trained NN, which means that on average R j = P j

NN.

6 Systematic uncertainties

The main source of systematic uncertainties is the dependence of the final results on the Monte Carlo
settings and tuning. In order to estimate this uncertainty, different MC settings were used in the process
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Fig. 6: Systematic changes in the final result caused by using different MC settings. Besides the final
result shown on the top, seven other results are shown that are obtained with MC samples that differ by
the choice of COMPASS or default LEPTO tuning, ‘Parton Shower’ on or off, FL from LEPTO or from
R = σL/σT , MSTW or CTEQ5L PDF sets, FLUKA or GHEISHA for secondary interactions. The results
for deuteron data are shown in the left panel and for the proton data on the right panel.

of neural network training. Different combinations of fragmentation parameters were used, the default
LEPTO tuning or the COMPASS tuning for the high-pT selected sample. The event generation was
done with and without the ‘Parton Shower’ [48]. Two PDF sets were used (MSTW08 or CTEQ5L [49]).
Two different parameterisations of the longitudinal structure function FL are used, either from LEPTO
or the R = σL/σT parameterisation of Ref. [50]. For secondary interactions, either the FLUKA or the
GHEISHA [51] package were used.

Figure 6 shows the results for the gluon Sivers asymmetry when using eight different MC productions
of the deuteron and proton data. The final result is presented on the top. These two MC productions,
using FLUKA and Parton Shower, yield the best comparison between experimental and MC data, which
is shown in Fig. 2 and 3. The systematic uncertainty originating from different MC tunings is calculated
as (APGF

max −APGF
min )/2.

The systematic uncertainty due to false asymmetries was studied by extracting the asymmetries between
the two parts of the same target cell. The results are found to be compatible with zero. Furthermore it was
checked how a small artificial false Sivers asymmetry influences the final result. When a false asymmetry
of 1% is introduced, for both proton and deuteron data the final result changes by 25% of the statistical
error. No systematic uncertainty is assigned to account for false asymmetries.

The final state of the photon-gluon-fusion process is a quark-antiquark pair. Thus most of the hadron
pairs produced from this subprocess should have opposite charge. Although a selection q1q2 = −1
slightly increases the (φg, φP) correlation, it also reduces the statistics. The results with and without this
requirement are statistically consistent. The requirement of opposite charges of the two hadrons is hence
not included in the data selection.

Radiative corrections were not included in the MC production that is used in the main analysis of this
letter. In order to estimate the systematic uncertainty introduced by this omission, a separate MC sam-
ple is used that was produced for the 2006 COMPASS set-up including radiative corrections based on
RADGEN [52]. The difference in the final value for the gluon Sivers asymmetry for the proton is only
0.018, which corresponds to 21% of the statistical uncertainty. A corresponding systematic uncertainty
is assigned due to the fact that radiative corrections are not included in the MC simulations and hence in
the NN training.
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Our results are obtained in only one xg bin for ASiv
PGF, one xC bin for ASiv

QCDC and one xB j bin for ASiv
LP .

As the asymmetries are strongly correlated binning in xB j affects the values of ASiv
PGF and ASiv

QCDC, which
are extracted in a single bin as before. The ASiv

PGF result changes by 0.07 for deuteron data and 0.011 for
proton data when two xB j bins are introduced, and these values are taken as an estimate of the related
systematic uncertainty (see Table 1).

The asymmetries ASiv
j of Eq. (4) were also extracted using the unbinned maximum likelihood method

that, as expected, yields the same results of APGF as the above described analysis. Concerning the or-
thogonality of different modulations of the cross section, it was checked by what amount the Sivers
asymmetry changes, when also the other seven asymmetries were included in the fit (see above). The
change in the final result of the PGF asymmetry is negligible for both deuteron and proton data.

The systematic uncertainties on target polarisation and dilution factor are multiplicative and estimated
to be about 5% and 2% of the statistical uncertainty, respectively. The final systematic uncertainty is
obtained by summing all components in quadrature. All above mentioned contributions and the final
systematic uncertainty are listed in Table 1.

Table 1: Summary on systematic uncertainties of the final values of the gluon Sivers asymmetry for
deuteron and proton data.

deuteron data proton data
source uncertainty fraction of σstat uncertainty fraction of σstat

Monte Carlo settings 0.060 40% 0.054 64%
radiative corrections 0.018 12% 0.018 21%
one or two xB j bins 0.07 47% 0.011 13%

include 7 other asymmetries 0.003 2% 0.005 6%
target polarisation 0.0075 5% 0.0043 5%

dilution factor 0.003 2% 0.0018 2%

total
√

∑σ2
i 0.10 63% 0.06 69%

7 Results

The method presented in Section 4 with the use of trained neural networks was applied to the two data
sets described in Section 2. The gluon Sivers asymmetry as extracted from lepton nucleon DIS, in which
at least two high-pT hadrons are detected, is shown in Fig. 7 and presented in Table 2 together with
the contribution of the two other hard processes, i.e. QCD Compton and leading process. The result of
the analysis of the deuteron data is ASiv,d

PGF = −0.14± 0.15(stat.)± 0.10(syst.) measured at 〈xg〉 = 0.13.
The proton result, ASiv,p

PGF = −0.26±0.09(stat.)±0.06(syst.) obtained at 〈xg〉 = 0.15, is consistent with
the deuteron result within less than one standard deviation of the combined statistical uncertainty. The
two results are expected to be consistent, as presumably the transverse motion of gluons is the same
in neutron and proton. Combining the proton and deuteron results, the measured effect is negative,
ASiv

PGF =−0.23±0.08(stat)±0.05(syst), which is away from zero by more than two standard deviations
of the quadratically combined uncertainty. This result is particularly interesting in view of the gluon
contribution to the proton spin. A non-zero gluon Sivers effect is a signature of gluon transverse motion
in the proton [25]. The recent analysis of the PHENIX data [31] gives a gluon Sivers effect for protons,
which is compatible with zero. The COMPASS result for the proton target is negative and more than
two standard deviations below zero, but it should be noted that the two results are obtained for different
centre of mass energy and xg values. Even more important, one has to recall that the existence of colour
gauge links complicates the picture, as they lead to two different universal gluon Sivers functions, which
in the different processes combine with process-dependent calculable factors [53]. As a result, the gluon
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Fig. 7: Sivers two-hadron asymmetry extracted for Photon-Gluon fusion (PGF), QCD Compton (QCDC)
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systematic uncertainties. Note the different ordinate scale used in the third row of panels.

Sivers function that appears in one process can be different from the one appearing in a different process,
and assessment of compatibility requires a deeper theoretical analysis.

Table 2: Summary of Sivers asymmetries, ASiv
PGF ,A

Siv
QCDC,A

Siv
LP , obtained for deuteron and proton data.

deuteron data proton data
process asymmetry statistical error systematic uncertainty asymmetry statistical error systematic uncertainty

PGF -0.14 0.15 0.10 -0.26 0.09 0.06
QCDC 0.12 0.11 0.08 0.13 0.05 0.03

LP -0.03 0.02 0.01 0.03 0.01 0.01

For the asymmetry of the leading process, the high-pT sample of the COMPASS proton data has provided
a positive value (see Fig. 7 right-bottom panel). It can be compared with the COMPASS results on the
Sivers asymmetry for charged hadrons produced in SIDIS `p→ `′h±X single-hadron production [17],
which for negative hadrons was found to be about zero and for positive hadrons different from zero and
positive, so that for the two-hadron final state a positive value may indeed be expected.

The same analysis method was also applied to extract the Collins-like asymmetry for charged hadrons,
i.e. the cross section dependence on the sine of the Collins angle (φP + φS− π). To this purpose, the
asymmetries Asin(φP+φS−π)

PGF , Asin(φP+φS−π)
QCDC , Asin(φP+φS−π)

LP were determined for the same COMPASS high-
pT deuteron and proton data samples. The results are shown in Fig. 8. The amplitude of the Collins
modulation for gluons is found to be consistent with zero, in agreement with the naive expectation that
is based on the fact that there is no gluon transversity distribution [54]. Recently it was suggested that a
transversity-like TMD gluon distribution hg

1 could generate a sin(φS +φT ) modulation in leptoproduction
of two jets or heavy quarks [41]. In this case the results shown in Fig. 8 provide a bound to the size of
hg

1. The results given in the present letter can also be interpreted such that no false systematic asymmetry
is introduced by the rather complex analysis method used, and that the result obtained for the gluon
Sivers asymmetry, which is definitely different from zero, is strengthened. It should also be noted that
the Collins-like asymmetry of the leading process for the proton is found to be consistent with zero for
high-pT hadron pairs, in qualitative agreement with the measurement of the Collins asymmetry in single-
hadron SIDIS measurement [55], where opposite values of about equal size were observed for positive
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The x range is the RMS of the logarithmic distribution of x in the MC simulation. The red bands indicate
the systematic uncertainties.

and negative hadrons.

8 Summary and conclusions

The Sivers asymmetry for gluons is extracted from the measurement of high-pT hadron pairs in SIDIS
at COMPASS off transversely polarised deuterons and protons. The analysis is very similar to the one
already used by the COMPASS collaboration in order to measure ∆g/g , the gluon polarisation in a
longitudinally polarised nucleon. The large kinematic acceptance and the high energy of the muon
beam make the sample containing two high-pT hadrons sufficiently large for the present analysis, which
is limited to a small part of the accessible phase space. The criteria applied to select hadron pairs
allow to enhance the contribution of the photon-gluon fusion process with respect to the leading-order
virtual-photon absorption process. The Sivers asymmetry was then obtained as the amplitude of the sine
modulation in the Sivers angle, φSiv = φP−φS.

In spite of the enrichment of the PGF fraction in the high-pT hadron pair sample, in order to single out the
contribution of the PGF process to the asymmetry it is necessary to subtract the contributions from the
other two processes, LP and QCDC. In this analysis, the fractions of the three processes were determined
from MC algorithms, and the three corresponding asymmetries were extracted from the data using a NN
technique. Therefore, the analysis requires a precise MC description of the data, so that these quantities
can be calculated reliably. Since the results derived from a NN approach strongly depend on the Monte
Carlo sample on which the network was trained, much effort was devoted to obtain a good description of
the experimental data by MC simulations, and the analysis was repeated using eight different MCs and
the (small) differences in the results were included in the systematic uncertainties.

Averaging results obtained from the deuteron and proton data, the measured gluon Sivers asymmetry
turns out to be−0.23±0.08(stat.)±0.05(syst.), which is away from zero by more than two standard de-
viations of the total experimental uncertainty. This result supports the existence of a transverse motion of
gluons in a transversely polarised nucleon, although the quantification of this motion is model-dependent.

In addition, another result obtained in this work from the same data is the extraction of the Collins-like
gluon asymmetry, i.e. the amplitude of the sine modulation of the Collins angle φCol = φP + φS− π .
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Recent developments have hypothesised a non-zero Collins-like gluon asymmetry that however is not
related to transversity. Our result on the Collins-like asymmetry, which is obtained from the same hadron-
pair data that we used to extract the non-zero result on the gluon Sivers asymmetry, is found to be
compatible with zero.
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