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Abstract. Sivers effect for gluons is connected to gluon orbital angular momentum which may be the missing
part of the nucleon spin puzzle. We present a method of extraction of Sivers effect for gluons from COMPASS
SIDIS data on transversely polarised target. In order to access the Sivers effect for gluons photon-gluon fusion
(PGF) process is used. To enhance the fraction of PGF in the sample high-pT hadron pair events are selected.
The method is based on a assumption that there are 3 processes contributing to the muon-nucleon scattering:
PGF, leading process and QCD Compton process. Then one performs a weighting procedure which enables to
extract the asymmetries for the 3 contributing processes simultaneously. In order to do that a neural network
trained by a Monte Carlo to assign to each event 3 probabilities corresponding to the 3 processes is needed.
Finaly we show results of Sivers effect for gluons extraction on COMPASS data with transversely polarised
deuteron target. Asin φ2h−φS

PGF = −0.14 ± 0.15(stat.) at 〈xG〉 = 0.126.

1 Introduction

In the paper we present the extraction of the Sivers effect
for gluons. In section 2 the analysis method enabling us
to extract Sivers effect from COMPASS data is presented.
Moreover the method enables us to separate the Sivers ef-
fect comming from the Photon-Gluon Fusion (PGF) and
quark-originated processes in leading order. Then, in Sec-
tion 3 the agreement between MC and data is presented.
MC is used to train a Neural Network and we demonstrate
the validation of this training. In Section 4 a Monte Carlo-
based example of application of our method is shown.
In Section 5 data selection for COMPASS data taken on
transversaly polarised deuteron target is presented. Fi-
nally, in Section 6 the results are shown. In Section 7 the
main source of the systematic error that is due to the choice
of MC is discussed.

2 Determination of Sivers asymmetry for
gluons for Q2 > 1(GeV/c)2

2.1 The measurement of Sivers asymmetry

The lepton-proton scattering cross-section containts 8
transverse momentum dependent modulation in the az-
imuthal angles including Sivers modulation, Ref. [4].

The transverse single spin SIDIS asymmetry is given
by:

Ah
T ∼

d6σ↑ − d6σ↓

d6σ↑ + d6σ↓
. (1)

SIDIS measurement with a transversely polarised target al-
lows to disentangle all 8 asymmetries (including the Sivers
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asymmetry) using one data set. Throughout this paper
only Sivers asymmetry will be mentioned.

In the following the set of all kinematic variables is
denoted by a vector ~x :

~x = (~pi, ~vi,Q2, y, ...) . (2)

The number of observed interactions in target cell c =

u, d, u′, d′ can be written as:

nc(~x) = αc(~x)(1 + βc(~x)Asin(φ2h−φs)
UT (~x)) , (3)

where u, d are the upstream and downstream target cells
before reversal of the target polarisation and u′, d′ de-
note the cells after reversing the polarisation of the target.
Moreover

αc(~x) = acΦncσ , (4)

βc(~x) = PT f sin(φ2h − φs) , (5)

where φ2h is the azimuthal angle of the vector sum of the
leading and next-to-leading hadron momenta. Here the
leading hadron is the hadron with the largest transverse
momentum. The dilution factor f is defined by the per-
centage of polarisable material in the target.
By applying the weighted method Eq. (3) can be weighted
with a weighting function ω(~x) :

pc :=
∫

ω(~x)nc(~x)d~x =

∫
ω(~x)αc(~x)d~x

+

∫
ω(~x)αc(~x)βc(~x)Asin(φ2h−φs)

UT (~x)d~x ≈
Nc∑
i=1

ωi, (6)

where the sum
Nc∑
i=1

ωi runs over all events with the primary

vertex in cell c. Then it can be rewritten in the following
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form:

Nc∑
i=1

ωi = α̃c(1 + {βc}ω{A
sin(φ2h−φs)
UT }ωβc ) , (7)

where
α̃c =

∫
ω(~x)αc(~x)d~x, (8)

{Asin(φ2h−φs)
UT }ωβc =

∫
Asin(φ2h−φs)

UT (~x)ω(~x)βcαc(~x)d~x∫
ω(~x)βcαc(~x)d~x

, (9)

{β}ω =

∫
β(~x)ω(~x)αc(~x)d~x∫
ω(~x)αc(~x)d~x

≈

∑
i βiωi∑

i ωi
. (10)

Here index c(= u, u′, d, d′) stands for the target cell.
Assuming a linear dependence of Asin(φ2h−φs)

UT as a function
of x , Sivers asymmetry can be written as Asin(φ2h−φs)

UT (x) =

a(x−〈x〉)+ Asin(φ2h−φs)
UT (〈x〉) . If 〈x〉ωβu ≈ 〈x〉ωβd ≈ 〈x〉ωβu′ ≈

〈x〉ωβd′ ≡ 〈x〉 one can simplify Eq. (7) and write:

Nc∑
i=1

ωi = α̃c(1 + {β}ωAsin(φ2h−φs)
UT (〈x〉)) . (11)

Using the assumption for integrated acceptances:

α̃uα̃d′

α̃dα̃u′
= 1, (12)

the 4 equations (one for each target configuration) with 5
unknowns ( α̃c and Asin(φ2h−φs)

UT ) can be reduced to 4 equa-
tions with 4 unknowns and the set of equations becomes
solvable.
So far the function ω(~x) is arbitrary, but it can be shown
that the best choice, taking into account statistic and sys-
tematic error of the extracted asymmetry, is:

ω(~x) =
β(~x)
PT

= f sin(φ2h − φs) . (13)

2.2 Extraction of Sivers asymmetry on gluons
from measured asymmetry

The Sivers asymmetry for the production of two high-pT

hadrons in the large Q2 regime can be expressed as
follows:

Asin(φ2h−φs)
UT = RPGF Asin(φ2h−φs)

PGF (〈xG〉) + RLPAsin(φ2h−φs)
LP (〈xB j〉)

+ RQDCDAsin(φ2h−φs)
QCDC (〈xC〉).

(14)

Here the coefficients R are the fractions of the three QCD
leading order subprocesses with labels LP , QCDC and
PGF that refer to leading process γq → q, QCD Compton
γq → qg, photon-gluon fusion γg → qq̄. The method
of extracting Asin(φ2h−φs)

PGF , Asin(φ2h−φs)
LP , Asin(φ2h−φs)

QCDC combines
approaches of two COMPASS analysis: the high-pT

hadron pair analysis with longitudinally polarized target
for extracting gluon polarisation ∆g/g, [1] and the open
charm analysis, [2] for separtion of the signal (PGF

process) and background (LP and QCDC). It was used in
all-pT hadrons analysis for longitudinally polarized target
at COMPASS for extracting ∆g/g, [3]. After substituting
Eq. (14) into Eq. (3) one can weight the outcome with 3
weights:

ωPGF ≡ ωG = RPGF f sin(φ2h − φs) =
βG

PT
,

ωLP ≡ ωL = RLP f sin(φ2h − φs) =
βL

PT
,

ωQCDC ≡ ωC = RQCDC f sin(φ2h − φs) =
βC

PT
.

(15)

Using these weights we can write 12 equations:

p j
c =

Nc∑
i=1

ω
j
i = α̃

j
c(1 + {βG

c }ω j Asin(φ2h−φs)
PGF (〈xG〉)

+ {βL
c }ω j Asin(φ2h−φs)

LP (〈xB j〉) + {βC
c }ω j Asin(φ2h−φs)

QCDC (〈xC〉))

= α̃
j
c

(
1 + APGF{β

G}ω j + ALP{β
L}ω j + AQCDC{β

C}ω j

)
.

(16)

Here j = PGF, LP,QCDC and linear dependence of the
asymmetries on x is assumed (see App. A). This way we
get 12 equations for 15 unknowns (3 asymmetries and 12
integrated acceptances). Again the assumption:

α̃
j
uα̃

j
d′

α̃
j
dα̃

j
u′

= 1, (17)

limits the number of unknowns to 12.

We can now construct two vectors:

~Nobs = (
Nu∑
i=0

ωG
i , ...,

Nd′∑
i=0

ωC
i ), (18)

~Nexp = (Nu
exp,G, ...,N

d′
exp,C), (19)

where the expected number of events is given by:

Nc
exp, j = α̃

j
c

(
1 + APGF{β

G}ω j + ALP{β
L}ω j + AQCDC{β

C}ω j

)
.

(20)

The asymetries (APGF , ALP, AQCDC) can be obtained by
minimizing χ2 :

χ2 = ( ~Nexp − ~Nobs)T Cov−1( ~Nexp − ~Nobs). (21)

The covariance matrix is defined as Cov(px, py) ≈∑
Nc
ωxωy.

2.3 Binning in the Sivers angle

The value of
∑

i ω =
∑

i Ri fi sin(φi
h − φ

i
S ) is close to 0

and the value of {β}ω ≈
(∑

i βiωi
)/(∑

i ωi
)

becomes large
what makes difficult to converge the fit. The solution is
to make two φh − φS bins: (0, π), (π, 2π). Then one can
make a simultaneous fit in the two bins with a constraint
A(1st_bin) = A(2nd_bin).
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3 Monte Carlo simulation and Neural
Network training

The Monte-Carlo (MC) simulations included a generation
the physics process, then the propagation of generated par-
ticles through the COMPASS spectrometer and the recon-
struction of MC events. The physical processes were sim-
ulated using LEPTO generator with COMPASS tuning.
The MC tuning was the same as in the high-pT analysis
for gluon polarisation determination and it is described in
detail in Ref. [1]. The only difference in the detector setup
is the transverse direction of the target spin. In this section
the agreement between MC and real data is presented and
the validation of the neural network training is shown.

3.1 Comparison of MC with real data

The comparison of MC and real data for distribution (nor-
malized to the number of entries of 3 inclusive kinematic
variables (xB j, Q2, y) and 5 hadronic kinematic variables
(pT1, pT2, pL1, pL2,

∑
p2

T = p2
T1 + p2

T2) is presented in
Fig. 1. From this comparison it can be concluded that the
agreement between MC simulation and real data is reason-
ably good.

3.2 Neural Network training

For the neural network (NN) training the MC simulated
data was used. As an input a vector of 6 kinematic vari-
ables: pT1, pT2, pL1, pL2, Q2, xB j has been applied. As
a target (the values which the NN tries to reach during the
training) the 2-dimensional vector (t1, t2) given by the fol-
lowing:

PGF : t1 = 0; t2 = 0,
LP : t1 = 0.5; t2 =

√
3/2,

QCDC : t1 = 1; t2 = 0
(22)

is applied.
The data set on which the neural network is trained is ran-
domly divided into two parts: the “training set” and the
“testing set”. The network is trained using the “training
set” while the “testing set” is used to monitor the training
procedure. When the objective functions obtained from
the two sets diverge too much, the training is stopped. The
NN was trained using the backpropagation algorithm, [6].
As a result of the training we get a network that assigns to
each event that is characterized by the 6 input kinematic
variables a 2-dimensional vector (o1, o2) from which the
process fractions can be obtained in the following way:

RPGF = 1 − o1 − 1/
√

3 o2,
RLP = 2/

√
3 o2,

RQCDC = o1 − 1/
√

3 o2.
(23)

To validate the NN training a following test is perform.
The MC sample is randomly divided into two equal sets.
Each set is divided into bins of PNN , the process fraction
according to NN output. In each bin the true fractions
PMC = Nprocess/Nall are calculated for each process. Ex-
emplary results are shown in Fig. 2. On the top pannels the
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Figure 1. The comparison between Monte-Carlo and real data
for different kinematic variables.

points represent the true MC process fraction (PMC) as the
function of PNN . The line shows the expexted dependence.
In the bottom pannels the difference PMC − PNN as a func-
tion of PNN is evaluated. The results are in a reasonable
agreement.

4 Validation of the method using Monte
Carlo

To validate the method we generate MC events. Each
event is tagged with the label of the process (LP, QCDC,
PGF) which was used to generate given event. Then ev-
ery event is weighted by 1 + AS IM

i sin (φ2h − φS ), where
i labels the process which is known in MC. We put the
simulated asymmetries (AS IM

PGF , A
S IM
QCDC , A

S IM
LP ) to constant

values. To such weighted MC sample we apply the de-
scribed method of asymmetry extraction expecting to get
Aextracted

i ' AS IM
i . The results are shown in Fig. 3. The red
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Figure 2. Neural network validation. Here PNN is the fraction of
the process given by the NN and PMC is the true fraction of each
process from MC in a given PNN bin.
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Figure 3. Validation of the analysis method. AS IM
PGF =

0.05, AS IM
QCDC = 0.1, AS IM

LP = −0.2

lines indicate the simulated values and the points represent
the extracted ones. From this results we conclude that the
method enables to distuinguish between asymmetries of
different processes.

5 Data sample and event selection

The data sample used includes data taken in 2003 and 2004
with transversely polarised deuteron target.

5.1 Polarisation of the target

The target was constructed of two oppositely polarised
cells ("up" cell and "down" cell). The polarisation in both
cells where inverted every several days.
The extrapolated track of incoming muon, µ, is required to
cross both target cells and the primary vertex to be inside
the nominal cell volumes.

5.2 Particle identification

The scattered muon candidate, µ′, is required to be very
penetrating and therefore a cut X/X0 > 30 is used on the
number of traversed radiation lengths. Here X is the mea-
sured length of the track of the particle, X0 the avarage ra-
diation length of the materials through which the particle
passed. It is also required to pass through the active area
of the trigger hodoscopes that have fired for the consid-
ered event. The event is also rejected when there is a high
momentum particle passing through the absorber’s hole.
Additionally there is a requirement for the reduced χ2 of
the track fit (χ2/nd f < 10). The scattered muon track is
required to have at least one hit in detectors upstream the
SM1 magnet.

In case of more than one µ′ candidate in the event,
the event is rejected. Moreover the µ′ track must not cross
yoke of the second magnet SM2.

Two particles coming from the primary vertex with the
largest pT with respect to the virtual photon q are consid-
ered as hadron candidates. First of all, both of them should
not be identified as muons. Therefore the number of radi-
ation lengths corresponding to their tracks should be small
(X/X0 < 10). In order to avoid tracks reconstructed in the
SM1 fringe field, we also require for a track of hadron can-
didate to have one hit before the SM1 magnet and one hit
after SM1. Finally there is a cut on the reduced χ2 of the
track fit (χ2/nd f < 10).

5.3 Kinematic cuts

There are two major reasons for choosing the high-
pT sample. First, with this choice the fraction of PGF in
the sample is enhanced. Secondly it improves the correla-
tion between the azimuthal angle of the gluon momentum
and the azimuthal angle of the reconstructed sum of two
leading hadron momenta.

The following cuts on inclusive kinematic variables
were applied: Q2 > 1 (GeV/c)2 to select events in the
perturbative region, 0.003 < xB j < 0.7, 0.1 < y < 0.9 and
W > 5 GeV/c2.

For further sellection following hadronic cuts were
used: the high-pT cut pT1 > 0.7 GeV/c, pT2 > 0.4 GeV/c,
which ensures that PGF fraction in the sample is enhanced
and that the correlation between the azimuthal angle of the
gluon and the azimuthal angle of the vector sum of two
hadrons is stronger. The cuts z1 > 0.1 and z2 > 0.1 are
used to select current fragmentation region and the cut
z1 + z2 < 0.9 is applied to reject events from exclusive
production.

6 Results

6.1 Final results

The Sivers asymmetry values are calculated in three peri-
ods of data taking. Each period consists of two data sets
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with opposite target polarisation. The final result is ob-
tained according to the following formula:

A f inal =

∑3
i=1

Ai

σ2
i∑3

i=1
1
σ2

i

, σ2
f inal =

1∑3
i=1

1
σ2

i

(24)

and is presented in Fig. 4. The result for the Sivers asym-
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Figure 4. Final Sivers asymmetries for different QCD processes
for 2003 and 2004 deuteron data.

metry for gluons is Asin (φ2h−φS)
PGF = −0.14 ± 0.15(stat.) at

〈xG〉 = 0.126. The result for the Sivers asymmetry for
the leading process Asin (φ2h−φS )

LP = −0.033 ± 0.024(stat.) at
〈xB j〉 = 0.028 and for the QCD-Compton: Asin (φ2h−φS )

QCDC =

0.12 ± 0.11(stat.) at 〈xC〉 = 0.137.
It should be added that the Asin (φ2h−φS )

LP is not be ex-
pected to be the same as the standard Sivers asymmetry
measured by COMPASS, Ref. [5]. This result is obtained
on a high-pT hadron pair subsample and the correlation
between parton azimuthal angles and reconstructed hadron
azimuthal angles is different what leads to different mea-
sured asymmetries.

7 Systematic studies

7.1 Systematic error due to MC

Several different MC samples were produced for system-
atic studies, as in Ref. [1] differing by the choice of PDF
model (CTEQ or MSTW), LEPTO tuning (default or tuned
to COMPASS data), parton shower on or off, FL from
LEPTO or from the R = σL/σT . Namely:

1. LEPTO DEF. tuning, parton shower ON,
PDF=CTEQ5L;

2. LEPTO DEF. tuning, parton shower OFF,
PDF=MSTW08;

3. LEPTO DEF. tuning, parton shower ON,
PDF=MSTW08;

4. LEPTO COMPASS tuning, parton shower ON,
PDF=CTEQ5L;

5. LEPTO COMPASS tuning, parton shower OFF,
PDF=MSTW08;

6. LEPTO COMPASS tuning, parton shower ON,
PDF=MSTW08, NO FL;

7. LEPTO COMPASS tuning, parton shower ON,
PDF=MSTW08.

For each of them aymmetry APGF has been calculated in
the same way as the final results and all of them were used
in the systematics studies. The results are presented in Fig.
5. Red colour indicates the MC used to obtain the final
result. For the systematic error that is due to MC tuning
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Figure 5. APGF for different MC simulations.

the half of the maximum difference of obtained results has
been chosen, which is 0.06.

A Approximation of asymmetries by linear
dependence on x

After substituting Eq. (14) into Eq. (3)

nc(~x) =αc(~x)(1 + βG
c (~x)Asin(φ2h−φs)

PGF (~x)

+ βL
c (~x)Asin(φ2h−φs)

LP (~x) + βC
c (~x)Asin(φ2h−φs)

QCDC (~x)). (25)

The outcome can be weighted with 3 weights:

ωPGF ≡ ωG = RPGF f sin(φ2h − φs) =
βG

PT
,

ωLP ≡ ωL = RLP f sin(φ2h − φs) =
βL

PT
,

ωQCDC ≡ ωC = RQCDC f sin(φ2h − φs) =
βC

PT
.

(26)
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Using these weights we can write 12 equations:

p j
c =

Nc∑
i=1

ω
j
i = α̃

j
c(1 + {βG

c }ω j {Asin(φ2h−φs)
PGF }ω jβG

c

+ {βL
c }ω j {Asin(φ2h−φs)

LP }ω jβL
c

+ {βC
c }ω j {Asin(φ2h−φs)

QCDC }ω jβC
c
).

(27)

Here j = G, L, C ≡ PGF, LP, QCDC. Asym-
metries Asin(φ2h−φs)

j (x j) can be approximated with a lin-
ear function, as discussed in Section 2.1. To simplify
the Eqs. (27) one needs to have {x j}ωkβ

j
c
≈ {x j}ωmβ

j
b
≡

〈x j〉 j, k,m = G, L,C and c, b run over u, d, u′, d′ 12
such values for each process can be approximated by
{x j}ωkβ

j
c
≈

(∑
i ω

k
i β

j
i xi

j

)/(∑
i ω

k
i β

j
i

)
. Here summation over

i is performed for each cell c. The results are stored in the
Table 1. Taking the average value of < xPGF >≡ 〈xG〉,
< xLP >≡ 〈xB j〉 and < xQCDC >≡ 〈xC〉 one can rewrite

equations (27) as follows:

p j
c =

Nc∑
i=1

ω
j
i = α̃

j
c(1 + {βG

c }ω j Asin(φ2h−φs)
PGF (〈xG〉)

+ {βL
c }ω j Asin(φ2h−φs)

LP (〈xB j〉) + {βC
c }ω j Asin(φ2h−φs)

QCDC (〈xC〉))

= α̃
j
c

(
1 + APGF{β

G}ω j + ALP{β
L}ω j + AQCDC{β

C}ω j

)
.

(28)
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ωLP ωQCDC

u d u’ d’ u d u’ d’
〈xG〉 0.1197 0.1245 0.1197 0.1245 0.126 0.1317 0.1259 0.1316
〈xB j〉 0.0249 0.0324 0.0246 0.0324 0.0313 0.0381 0.0309 0.038
〈xC〉 0.1222 0.1407 0.122 0.1407 0.1375 0.1568 0.137 0.1568

ωPGF

u d u’ d’ RMS 〈x〉
〈xG〉 0.1231 0.1288 0.1231 0.1287 0.0038 0.1256
〈xB j〉 0.0191 0.0221 0.019 0.022 0.0065 0.0279
〈xC〉 0.1233 0.1408 0.1232 0.1405 0.0118 0.1368

Table 1. Weighted averages of x for 3 contributing processes.
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