The QCD Analysis Of The World Data On Structure Functions $g_1^{p,d,n}$ For Proton, Deuteron And Neutron

I.A.Savin,

JINR, Joliot Curie, 6, Moscow Region, 141980, Russia

On Behalf of The COMPASS Collaboration

Abstract. The fits of all published data on g_1 , including the new COMPASS measurements of $g_1^d(x, Q^2)$, have been performed by using two different QCD evolution formalisms in the next-to-leading-order (NLO) approximation. In both methods we obtain two solutions for fitted parameters of the parton distribution functions (PDFs), one with $\Delta G > 0$ and the other - with $\Delta G < 0$, where ΔG is the first moment of the polarized gluon distribution in nucleon.

Keywords: Structure Functions, Nucleon Structure, Parton Distributions, Quantum Chromodynamics, Evolution Equations.

PACS: 12.38.Qk, 13.60.Hb, 14.65. -q, 14.65.Bt, 14.70.Dj

1. INPUT DATA AND FITTING PROCEDURES

The NLO QCD fits on $g_1(x, Q^2)$, performed by the COMPASS Collaboration, have been motivated by two reasons: first - to see an impact of the new COMPASS data [1] on the parametrizations of polarized PDFs [2], second - to cross check the QCD results by using two different methods of the analysis.

All published data (see [1] and references therein) on spin-dependent structure functions $g_1^p(x,Q^2)$, $g_1^n(x,Q^2)$ and $g_1^d(x,Q^2)$ were used as an input. The data have included 230 $g_1(x, Q^2)$ points and covered a DIS region from 1 to about 100 GeV^2 in Q^2 . Usual DIS cut $Q^2 > 1$ GeV^2 limits the x range. For the COMPASS data this limit corresponds to x > 0.004. This is the lowest x-value for all the data. The highest values of x are limited by acceptance and statistics at $x \approx 0.75$.

In the quark-parton model the g_1 is expressed as convolutions of the non-singlet $(\Delta q_3 \text{ and } \Delta q_8)$, singlet $(\Delta \Sigma)$ and gluon (ΔG) parton distribution functions and corresponding Wilson coefficient functions. In the 3 quark limit the PDFs are related to the *u*-, *d*- and *s*-quark distributions:

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s, \ \Delta q_3 = \Delta u - \Delta d, \ \Delta q_8 = \Delta u + \Delta d - 2\Delta s.$

Fits have been performed by two programs. The Program 1 [3] is based on the numerical solution of the DGLAP integro-differential evolution equations for PDFs. The Program 2 [4], first, finds the analytical solution of differential equations for the PDFs moments and, second, performs the inverse Mellin transformation of moments for the final PDFs reconstruction.

The programs work in the \overline{MS} renormalization and factorization scheme in the NLO approximation and require the input *x*-parametrization of PDFs at the initial $Q_0^2 = 3GeV^2$, which is close to the weighted average of the present COMPASS data.

The PDFs $\Delta \Sigma$, Δq_3 , Δq_8 and ΔG are parametrized as:

$$\Delta F(x, Q_0^2) = \eta_k \frac{x^{\alpha_k} (1 - x)^{\beta_k} (1 + \gamma_k x)}{\int_0^1 x^{\alpha_k} (1 - x)^{\beta_k} (1 + \gamma_k x) dx}, \qquad \eta_k = \int_0^1 \Delta F_k(x, Q_o^2) dx$$

and 11 parameters η_{k} , α_{k} , β_{k} and γ_{k} are found by minimization of the sum:

$$\chi^{2} = \sum_{i=1}^{230} \frac{\left[g_{1}^{fit}(x_{i}, Q_{i}^{2}) - g_{1}^{\exp}(x_{i}, Q_{i}^{2}) \right]^{2}}{\left[\sigma(x_{i}, Q_{i}^{2}) \right]^{2}}$$

where g_1^{fit} and g_1^{exp} is the evolved and experimental value of the structure function, respectively, and σ is a statistical error. Fits are performed under conditions that: parameters η_3 and η_8 are fixed by the baryon octet constants F and D assuming the SU(3)_f flavor symmetry; linear term $\gamma_k x$ is used for the singlet PDFs only; $\alpha_s(Q^2)$ evolved from the PDG value $\alpha_s(M_z^2) = 0.1187 \pm 0.005$; positivity limits $|\Delta s(x)| \le s(x)$ and $|\Delta G(x)| \le G(x)$ are imposed at each step of optimizations and the unpolarized PDFs are taken from MRST parametrizations [5].

2. RESULTS OF THE FITS

The both programs give consistent shapes of the PDFs and values of its fitted parameters (see the list in [1]) with similar χ^2 for the two solutions, one - with ΔG >0 ($\chi^2/\text{ndf} = 233/219$) and the other - with ΔG <0 ($\chi^2/\text{ndf} = 247/219$).

The parameters η_{Σ} , or the first moments of the singlet quark distributions, for the two solutions and two programs, are very close to each other and can be averaged: $\eta_{\Sigma} = 0.30 \pm 0.01$ (stat.) ± 0.03 (syst), where the systematic error represents the difference between the fits.

The fits reproduce trends of the world g_1 data rather well (see Fig.1) but precisions of the measurements, especially for g_1^d and g_1^n , are still poor.

FIGURE 1. The world data on $g_1(x)$ at $Q^2=3 \ GeV^2$. The solid line is the fit for $\Delta G < 0$, the fit for $\Delta G > 0$ is not distinguished in this scale.

The fitted $g_1^N(x) = g_1^d(x,Q^2)/(1-1.5\omega_D)$ at $Q_0^2 = 3GeV^2$, where ω_D is a probability for the D-wave state of the deuteron, are compared in Fig.2 with the COMPASS data [1] and with the published PDFs parametrizations [2] obtained without the new COMPASS measurements of g_1^d .

FIGURE 2. The COMPASS values of $g_1^N(x)$ evolved to $Q^2 = 3 \ GeV^2$ with $\Delta G > 0$ and $\Delta G < 0$, the corresponding results of the world data fits and the published LSS, GRSV and BB parametrizations, are shown. These parametrizations lead to almost the same values of g_1^N and have been averaged. Two additional COMPASS points at the smallest x obtained with $Q^2 > 0.7 \ GeV^2$ (not included in the fits), are also shown. The data points evolved with different fits are shifted in x for clarity. Errors are statistical only.

From this figure one can see that (1) even additional two points at the smallest *x* do not help to choose between the ΔG solutions; (2) previous parametrizations do not reproduce the trend of the COMPASS data at $x \rightarrow 0$ and (3) the fit with $\Delta G > 0$ shows a dip at $x \sim 0.25$ related to the shape of $\Delta G(x)$.

The shapes of $\Delta G(x)$ obtained by two Programs are shown in Fig.3 for $\Delta G > 0$ and $\Delta G < 0$. They are almost identical. For the positive case the shape of $\Delta G(x)$ is restricted from two sides: it must be close to zero at low *x*, to avoid pushing $g_1^N(x)$ down to negative values, and limited at higher *x* by the positivity constraint $|\Delta G(x)| < G(x)$. As a consequence, the whole $\Delta G(x)$ is squeezed in a narrow interval of *x* around the

maximum at $x \approx 0.25$. For the negative case the shape of $\Delta G(x)$ is rather smooth in the whole range of x.

Although the gluon distributions strongly differ in two fits, the fit parameters η_G , i.e. the first moments of the gluon distributions, are both small and almost equal in the absolute value: $|\eta_G| \approx 0.2$ -0.3. So, the gluon contribution to the nucleon spin is rather small.

FIGURE 3. The gluon distributions $x \cdot \Delta G(x)$ corresponding to the fits with $\Delta G > 0$ (upper plots) and $\Delta G < 0$ (lower plots) obtained with Program 1 (left) and Program 2 (right). The dashed, solid and dotted lines correspond to $Q^2 = 1.5,3$ and 10 GeV^2 , respectively. The unpolarized distributions $x \cdot G(x)$, used as constraints, are shown for $Q^2 = 1.5$ and 3 GeV^2 .

The direct measurements of the gluon polarization could help to choose between the two solutions for ΔG . In Fig.4 the available data are compared to the fitted $\Delta G(x)/G(x)$. The most precise COMPASS – high $p_T - Q^2 < 1 \text{ GeV}^2$ – point is closer to the $\Delta G > 0$ solution, although it is only 1.3σ away from $\Delta G < 0$. Further improvement of the precision is needed.

The polarized strange quark distributions, obtained from the fits, are almost identical for $\Delta G > 0$ and $\Delta G < 0$. The first moment of the polarized strange quark distribution found from the fits at $Q^2 = 3GeV^2$, is $(\Delta s + \Delta \overline{s}) = -0.10 \pm 0.01(stat) \pm 0.01(evol)$, where the evolution error is estimated from the results obtained by the two programs.

In conclusion, the new QCD NLO fits of the world data on g_1 have produced consistent results and yielded the two solutions for the PDFs parameters with $\Delta G(x) > 0$

and $\Delta G(x) < 0$, which equally well describe the present g_1 data. Direct measurements of the gluon polarization could help to choose between them. The first moments of the polarized singlet quark, gluon and strange quark distributions found from fits at $Q^2 = 3GeV^2$, are equal to: $\eta_{\Sigma} = 0.30 \pm 0.01(stat) \pm 0.03(syst), |\eta_G| \approx 0.2 - 0.3$,

 $(\Delta s + \Delta \overline{s}) = -0.10 \pm 0.01(stat) \pm 0.01(syst)$, respectively, where systematic errors are estimated from the difference of the results obtained by two programs.

FIGURE 4. The gluon polarization $\Delta G(x)/G(x)$ at $Q^2 = 3 \ GeV^2$ for the fits with $\Delta G > 0$ (solid line) and $\Delta G < 0$ (dashed line). The bands correspond to the statistical errors.

3. REFERENCES

- 1. COMPASS, V.Yu.Alexakhin et al., hep-ex/0609038, submitted to *Phys.Lett.B*.
- J.Bluemlein and H.Boettcher, *Nucl.Phys.B* 636 (2002)225;
 M.Glueck, E.Reya, M.Stratmann and W.Vogelsang, *Phys.Rev.* D63 (2001) 094005;
 E.Leader, A.V.Sidorov and D.B.Stamenov, *Phys.Rev.* D73 (2006) 034023.
- 3. SMC, B.Adeva et al., *Phys.Rev*.D58(1998) 112002.
- 4. A.N.Sissakian, O.Yu.Shevchenko and O.N.Ivanov, Phys. Rev. D70 (2004) 074032.
- 5. A.D.Martin et al., Phys.Lett B 604 (2004)61