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Abstract
I review the results from lattice gauge theory for the properties of the light 1−+

exotic state and 0++ glueball.

1. INTRODUCTION

High-energy experiments have confirmed that QCD is a simple elegant theory that contains quarks and
gluons. At low energy the states observed in experiments are messy hadrons. It is hard to relate the world
of quarks and gluons to the ‘real-world’ practicalities of hadrons, because QCD is such a hard theory to
solve. A particularly good test of our understanding of the non-perturbative aspects of QCD is to study
particles where the gauge field is excited somehow, and hence playing a more important dynamic role
than in ‘standard’ hadrons. Examples of such particles are glueballs (particles made out of the gauge
fields) and hybrid mesons (qq and excited glue).

Quantities, such as masses, depend on the coupling (g) like M ∼ e−1/g2

[1], hence perturbation
theory can’t be used to compute the masses of hadrons such as the proton. The only technique that offers
any prospect of computing masses and matrix elements non-perturbatively, from first principles, is lattice
QCD. I review the results from the lattice for the glueballs and mesons with exotic quantum numbers,
Other recent reviews [2–4] of lattice results for hybrids and glueballs focus on different aspects of the
subject.

2. LATTICE QCD CALCULATIONS

In this section, I briefly describe the formalism for lattice QCD calculations. The lecture notes by
Gupta [5] provide specific details about lattice QCD calculations.

Many bound state properties of QCD can be determined from the path integral

c(t) ∼

∫

dU

∫

dψ

∫

dψ
∑

x

O(0, 0)O(x, t)†e−SF−SG (1)

where SF is the fermion action (some lattice version of the continuum Dirac action) and SG is the
pure gauge action. The path integral in Eq. (1) is put on the computer using a clever finite difference
formalism [1], due to Wilson, that maintains gauge invariance. The path integral in Eq. (1) is evaluated
using algorithms that are generalizations of the Monte Carlo methods used to compute low-dimensional
integrals. The algorithms produce samples of gauge fields, that are essentially snapshots of the vacuum.
The physical picture for Eq. (1) is that a hadron is created at time 0 using an interpolating operator. The
quarks then propagate to time t in the background of the gauge fields, where the hadron is destroyed.
The physics from the calculation is extracted using a fit model [1]:

c(t) = a0e
−m0t + a1e

−m1t + · · · (2)

wherem0 (m1) is the ground (first excited) state mass and the dots represent higher excitations. Although
in principle excited state masses can be extracted from a multiple exponential fit, in practise this is a
numerically non-trivial task, because of the noise in the data from the Monte Carlo calculation. More
sophisticated fitting techniques are starting to be used to extract masses from the data. For example the
CP-PACS Collaboration have used maximum entropy fitting techniques [6] to look at excited states of
the rho and pion in quenched QCD. CP-PACS obtained the masses of the first excited rho and pion to be



1540 (570) MeV and 660 (590) MeV respectively [6]. More experience is needed with these ‘advanced
fitting’ methods before they can be used to make physical predictions.

Any gauge invariant combination of quark fields and gauge links can be used as interpolating
operators (O(x, t)) in Eq. (1). Interpolating operators that are similar to the state will couple strongly
to the state. For example, a qqqq state may not couple strongly to an interpolating operator with only a
valence content of qq.

The fermion integration can be done exactly in Eq. (1) to produce the quark determinant. The
determinant describes the dynamics of the sea quarks. In quenched QCD calculations, the quark deter-
minant is set to a constant. Quenched calculations are roughly 1000 times computationally cheaper than
the calculations that include the dynamics of the sea quarks.

There are a variety of heuristic ways of understanding quenched QCD. One way is to view
quenched QCD as QCD with infinitely heavy sea quarks. The connection between quenched QCD
and the large Nc (number of colours) limit of QCD has recently been discussed by Chen [7]. Perhaps,
surprisingly quenched QCD gives quite a reasonable description of experiment. For example, the most
accurate quenched calculation of the hadron spectrum, to date, has been completed by the CP-PACS
Collaboration [8]. CP-PACS [8] found that the masses of 11 light hadrons disagree with experiment by
at most 11%. Quenched QCD is not a consistent theory and problems with the formalism have been
found in calculations [9].

In an individual lattice calculation there are errors from the finite size of the lattice spacing and the
finite lattice volume. State-of-the-art lattice calculations in quenched QCD run at a number of different
lattice spacings and physical volumes and extrapolate the results to the continuum and infinite volume [8]
limit. The increased computational costs of unquenched calculations means that most calculations are
currently done at fixed lattice spacings [10] or an extrapolation to the continuum limit is attempted from
coarse lattice spacings [11]. One of the most interesting unquenched calculations is being performed
by the MILC Collaboration [12]. MILC’s calculations include 2+1 flavours of sea quarks with a lattice
spacing of 0.09 fm, box size of 2.6 fm, and the lightest ratio of the pseudo-scalar to vector mass is 0.4.

3. RESULTS FOR GLUEBALLS IN QUENCHED QCD

Interpolating operators for glueballs are constructed for Eq. (1) from closed loops of gauge links with
specific JPC quantum numbers. Some highlights of the results are that the lightest glueball is the 0++

state with a mass of 1.611(30)(160) GeV [2,13] (where the second error is systematic). The next lightest
glueball is 2++. The ratio of the tensor to scalar glueball mass is M2++/M0++ = 1.42(6) [13]. The
spectrum of glueball states for other JPC quantum numbers with masses under 4 GeV has been compre-
hensively mapped out by Morningstar and Peardon [14].

In the real world glueballs will decay to two mesons, hence they will have a decay width. Lattice
QCD calculations are performed in Euclidean space, for convergence of the path integral in Eq. (1). The
Euclidean nature of lattice calculations makes the computation of inherently complex quantities such as
decay widths more involved [15].

The GF11 lattice group computed the decay widths for the decay of the 0++ glueball to two pseu-
doscalars [16] to be 108(28) MeV. Although the error is only statistical, it is encouraging that the width
was small relative to the mass, so the 0++ glueball may exist as a well-defined state. The calculation was
done at a coarse lattice spacing. The decay widths for individual meson pairs [17] did not agree with the
predictions from the ‘flavour democratic’ assumption.

The experimental situation [18] for light 0++ scalars is very interesting, because there are too
many states to put into SU(3) nonets, as other particles with different J PC quantum numbers, such as
the pseudoscalars, can be. The f0(1370), f0(1500), and f0(1710) hadrons have masses close to the
mass of the 0++ glueball from quenched QCD. Potentially one way of identifying one of the f0’s with
a quenched glueball would be to reduce the errors on the value of the mass of the 0++ glueball until



the value agrees with one of the experimental masses and the error is at least 3σ away from the other
masses. This requires the error on the 0++ glueball mass to be below 50 MeV. The detailed error for
the mass of the 0++ mass from Morningstar and Peardon [14] is 1730(50)(80) MeV. The second error
is from the different ways of choosing the lattice spacing in quenched QCD calculations and reflects the
fact the quenched QCD is not the real world. As the 80 MeV systematic error can not be reduced in
quenched QCD, the quenched glueball spectrum is known as accurately as it will ever be. There are
some preliminary indications that this ambiguity in the choice of lattice spacing has been reduced in the
unquenched calculations from the MILC Collaboration [12, 19].

In unquenched QCD interpolating operators with 0++ can be constructed from quarks and anti-
quarks, such as qq. In full QCD, the pure glue 0++ operators will mix with the fermionic 0++ operators.
If the mixing is very strong, then the final 0++ masses will have little to do with the glueball masses
from quenched QCD.

Weingarten and Lee [20] studied the effect of mixing between the glueball and qq states in
quenched QCD. They measured the correlation between the 0++ glueball states and qq states in Eq. (1).
The results were expressed as a mixing matrix

(

mg E(s)
E(s) mσ(s)

)

(3)

where mg is the glueball mass, mσ(s) is the mass of the non-singlet 0++ state at the strange quark
mass, and E(s) is the mixing energy. Weingarten and Lee measured: mg = 1648(58) MeV, mσ(s) =
1322(42) MeV, and E(s) = 61(58) MeV in the continuum limit. The qualitative picture that emerges
is that the f0(1710) is ‘mostly’ 0++ glueball, and the f0(1500) is ‘mostly’ ss. It is not clear whether
f0(1500) being ss is consistent with its decay width [21]. The mixing energy E(s) has large lattice
spacing errors. For example at a lattice spacing of a−1 ∼ 1.2 GeV, the Weingarten and Lee [20] result is
E(s) ∼ 0.36 GeV. This has been checked by another group’s result [22] of E(s) ∼ 0.44 GeV.

The analysis of Weingarten and Lee [20] depends on the 0++ states being well defined in quenched
QCD. Bardeen [9] et al. have shown that there is a problem with the non-singlet 0++ correlator in
quenched QCD. The problem can be understood using quenched chiral perturbation theory. The non-
singlet 0++ propagator contains an intermediate state of η ′ − π. The removal of fermion loops in
quenched QCD has a big effect on the η ′ propagator. The result is that a ghost state contributes to
the scalar correlator, that makes the expression in Eq. (2) inappropriate to extract masses from the calcu-
lation. Eichten et al. [9] predict that the ghost state will make the a0 mass increase as the quark mass is
reduced below a certain point. This behaviour was observed by Weingarten and Lee [20] for small box
sizes (L ≤ 1.6 fm) for quark masses below strange. It is not clear how the problem with the non-singlet
0++ correlator in the quenched approximation affects the results of Weingarten and Lee [20], however,
their most important results come from masses above the strange quark mass where the ghost diagram
will make a smaller contribution that may be negligible.

Lattice QCD calculations are sometimes criticized for just producing numbers, but no insight.
Increasingly, lattice QCD methods are used to provide intuition about hadronic physics. For example
the large Nc limit of QCD has been a place where analytical calculations are possible, however, the
calculation of the 1/Nc corrections has turned out to be hard.

Teper and Lucini [23] have systematically studied the glueball spectrum forNc = 2,3,4 and 5. They
found that the dependence of the glueball spectrum on Nc is weak. To determine the Nc dependence
of the glueball masses, the systematic errors, such as lattice spacing errors, had to be quantified and
controlled. This type of lattice study is very useful to the attempts to compute the glueball spectrum
using the ADS super-gravity duality (for example see Brower et al. [24] and the references within), as
the glueball spectrum is obtained in the large Nc limit.

The light scalar mesons seem to be full of surprises. There are lighter 0++ states, such as the
f0(980) and the a0(980), and the enigmatic f0(400−1200). The f0(980) and a0(980) states are consid-



ered by some people to be kaon molecules or qqqq states, although there are dissenting opinions. There
has been some recent work by Alford and Jaffe [25] on qqqq quark states.

4. RESULTS FOR GLUEBALL MASSES IN TWO-FLAVOUR QCD

The Weingarten and Lee [20] analysis predicted that the mixing of the 0++ glueball and qq states is
small. Parts of their calculation have been criticized in Ref. [22], however, the problems with the non-
singlet 0++ correlator [9] in the quenched QCD will make further progress in mixing in the quenched
QCD difficult. There are attempts to take into account the quenched artifact in the a0 correlator [26].

A lattice QCD calculation that included the dynamics of the sea quarks should just reproduce the
physical spectrum of 0++ states. Some insight into the composition of individual 0++ states, such as
whether a physical particle couples to qq or pure glue operators, could be studied by looking at the effect
of decreasing the sea quark mass. For very heavy sea quark masses the theory is more like quenched
QCD, where glueballs are distinct from qq operators.

Figure 1 shows a compendium of recent results for the mass of singlet 0++ states from two-flavour
unquenched QCD versus the square of the lattice spacing.

Fig. 1: Singlet 0
++ mass in units of r0 as a function of lattice spacing. The crosses are from SESAM [27]. The octagons

are from UKQCD’s [22] first nf = 2 data set. The diamonds are the results from Hart and Teper [28]. The bursts are from

a combined analysis of glueball and qq interpolating operators. The squares are the results from quenched calculations (see

Ref. [22] for references).

Hart and Teper [28] found that the ratio of the 0++ glueball mass in nf = 2 QCD to the quenched
QCD result was: M 0++

nf=2/M
0++

quenched = 0.84 ± 0.03 at a fixed lattice spacing of 0.1 fm. The nf = 2
results [28] for the mass of the 2++ were consistent with the quenched value. As the lattice spacing
dependence of the mass of the singlet 0++ state in two-flavour QCD and quenched QCD could be dif-
ferent, a definitive result will only come after a continuum extrapolation of the unquenched masses. In
quenched QCD [13], the difference between the continuum extrapolated mass of the 0++ glueball and
the mass at 0.1 fm is of the order of 200 MeV. This is the same magnitude of the mass splittings between
the masses of the experimentally observed particles f0(1500) and f0(1710). Although the current results
for singlet 0++ states are starting to be interesting, the lattice spacing used in unquenched calculations
must be reduced before direct contact can be made to phenomenology.



Traditionally, glueball calculations have been done with Wilson loop type operators. However,
singlet quark operators of the form qq also have the quantum numbers of 0++. The UKQCD Collabora-
tion were the first to attempt a joint analysis of 0++ states that included glueball and qq operators [22].
Preliminary results are now available for a finer lattice spacing [29]. In Fig. 1 we plot the masses from the
calculation by Hart and Teper (diamonds) with the masses obtained in this analysis (bursts). The value
of 1/r0 is ∼ 373 MeV from the string tension [2]. The inclusion of the qq operators with the Wilson loop
operators has produced a further suppression of the mass of the singlet 0++ state at the lattice spacing
used.

The mass of the 0++ singlet meson on the lightest UKQCD data set are degenerate with the mass
of two pions [28]. As the mass of the sea quarks is reduced, two-pion states may affect the physics
of singlet 0++ states. Two-pion interpolating operators may also need to be included in the basis of
interpolating operators.

5. RESULTS FOR LIGHT 1
−+ EXOTIC MESONS

The quark model predicts the charge conjugation (C = (−1)L+S ) and parity (P= (−1)L+1 ) of a meson
with spin S and orbital angular momentum L. States with quantum numbers not predicted by the quark
model, such as JPC

exotic = 1−+, 0+−, 2+−, 0−− are known as exotics [30]. Exotic states are allowed by
QCD. Morningstar and Peardon [14] claim that there are no glueballs with exotic quantum numbers with
masses less than 4 GeV in quenched lattice QCD.

There are a number of different possibilities for the structure of an exotic state. An exotic state
could be a hybrid meson, that is a quark and anti-quark with excited glue, or bound state of two quarks
and two anti-quarks (qqqq).

One possible interpolating operator [31], that can be used in Eq. (1), for a hybrid 1−+ particle is

O1−+(x, t) = q(x, t)γjFij(x, t)q(x, t) (4)

where F is the QCD field strength tensor. If F is removed from Eq. (4), the operator creates the ρ particle.
In this formalism a gauge invariant interpolating operator, for any possible exotic hybrid particle or four-
particle state can be constructed. The dynamics then determines whether the resulting state has a narrow
decay width, hence it can be detected experimentally. In the large Nc (number of colours) limit [30, 32]
both exotic hybrid mesons and non-exotic mesons have widths that are small compared to their masses.

There have not been many new calculations of the mass of the light 1−+ hybrid recently. All the
results from the various lattice QCD calculations, by UKQCD [33,34], MILC [31,35] and SESAM [36]
are essentially consistent with the mass of the 1−+ state around 1.9(2) GeV [2]. The interpolating
operators used to create the exotic meson states in the MILC calculations [31] are different from those
used in the UKQCD [33] and SESAM simulations [36], hence giving confidence that the systematic
errors are under control. The results for the hybrid masses reported by Lacock and Schilling [36], include
some effects from dynamical sea quarks. The recent results for the 1−+ mass from calculations that used
an asymmetric [37] lattice in time (for a better signal to noise ratio) are consistent with the older results.

The MILC Collaboration have started the first serious study of the exotic meson spectrum in
unquenched QCD [38]. The MILC Collaboration use a formalism called improved staggered fermions
for the quarks. This formulation can study much lighter quarks than competitive fermion actions. The
main disadvantage of this formalism is that flavour symmetry is broken. The preliminary result from
MILC for the mass of the lightest 1−+ state is consistent with (or perhaps slightly lower than) earlier
estimates from MILC and UKQCD. MILC found problems extracting the 1−+ state from the lightest
unquenched calculations [38]. Their preliminary speculation is that this is due to mixing with qqqq
states. Further work is required to test this.



There are a number of experimental candidates for light 1−+ states [18]. The E852 Collaboration
have reported [39] a signal for 1−+ state around 1.6 GeV. There is also an experimental signal for a 1−+

state at 1.4 GeV [18].

There has been some recent work [40] on the quark mass dependence of the 1−+ states. The
lattice calculations are usually done at large quark masses and the results extrapolated to the physical
quark masses. The conclusion of Ref. [40] was that the inclusion of the decay of the hybrid in the
quark mass dependence of the exotic mass could reduce the final answer by 100 MeV. The predictions
in Ref. [40] will be tested as the quark masses used in lattice calculations are reduced. The 1−+ state at
1.4 GeV seems low relative to the lattice results.

It is possible that the states seen experimentally are really qqqq states, in which case the operators
used in the lattice simulations [Eq. (4)] might not couple strongly to them. Alford and Jaffe [25] studied
qqqq operators with JPC = 0++ in a recent lattice calculation. The motivation was to gain insight into
states such as the f0(980) that some people believe is not a qq meson, but a qqqq state. A similar lattice
calculation could in principle be done for the JPC = 1−+ exotic.

To definitely identify a particle requires both the calculation of the mass as well as the decay
widths. There has been very little work on strong decays on the lattice. The most obvious hadronic
process to study using lattice gauge theory is the ρ → ππ decay, however, there have only been a few
attempts to calculate the gρππ coupling [41, 42]. Michael discusses the problems with the formalism for
hadronic decays on the lattice [15].

In the static quark limit the exotic states on the lattice are described by adiabatic potentials. The
ground state of the static potential (A1g) is the familiar Coulomb plus linear potential. The excited
potential (Eu) is a very flat potential, that can be used with Schrödinger’s equation to predict the spectrum
of heavy-heavy hybrids [2]. UKQCD [43] have investigated the de-excitation of the Eu potential to the
A1g potential by the emission of a light quark loop. In the real world, the decays would correspond
to 1−+ → χbη and 1−+ → χbS with S a scalar and η a pseudo-scalar. The decay width of 1−+ →

χbη and 1−+ → χbS transitions were less than 1 MeV and around 80 MeV respectively. The various
approximations in the static limit mean that these widths have no direct relevance to experiment.

The MILC Collaboration [31] have investigated the mixing between the operator in Eq. (4) and
the operator (π ⊗ a1) Eq. (5).

qaγ5q
aqbγ5γiq

b (5)

that has the quantum numbers 1−+. This type of correlator is part of the calculation required to compute
the decay width of the 1−+ state to ρ, and a1. The more complicated part is to use Eq. (5) in Eq. (1)
which requires some clever numerical work.

6. CONCLUSIONS

The glueball spectrum from quenched QCD has been stable for a number of years and has provided useful
hints to experiments that are trying to find experimental evidence for glueballs. The mixing between
glueball and qq states has been studied by Lee and Weingarten [20] and the UKQCD Collaboration [22].
Further checks on the seminal calculations of Lee and Weingarten [20] will be hampered by formalism
problems in quenched QCD [9]. It is better to study the mixing using unquenched QCD calculations [22].

Progress in glueball and hybrid meson spectroscopy will be dependent on how close the masses
of the sea quarks are to their physical values. The physical mass of the singlet 0++ in unquenched QCD
is obscured by lattice artefacts. To reduce the systematic errors on the mass of the singlet 0++ requires
lattice calculations at finer lattice spacings. This is computationally expensive, but possible.

The computation of decay widths from a Euclidean lattice calculation is a tough problem. The
UKQCD Collaboration have recently computed the coupling for the rho to decay to two pions [44]. This
formalism may be able to compute couplings for decays relevant to scalar and exotic meson decays.



There is a sizeable community of lattice people in the UKQCD Collaboration who are interested
in glueball and exotic meson physics. At the end of 2003 the UKQCD Collaboration will get a QC-
DOC [45] (QCD On a Chip) computer that has essentially the computational power of 10 000 PCs. So
the COMPASS Collaboration may expect improved lattice calculations of pertinent hadronic masses
from the UKQCD Collaboration in the next few years.
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