Physics Department

ISIEC – INITIAL SAFETY INFORMATION ON EXPERIMENTS AT CERN

PURPOSE OF THIS TEMPLATE

This document shall be completed by the GLIMOS of an experimental collaboration, whenever it intends to bring new experimental apparatus, new test beams or make major modifications to experimental apparatus already operating at CERN.

The purpose of this document is to provide a summary description of the equipment that is to be brought to CERN and the activities that are to be carried out. This document will then allow the PH Safety Office (PH-SO) to perform an initial safety assessment; i.e. identification of the applicable safety requirements, control measures, etc.

This ISIEC document will serve as a basis for the safety information on an experiment. Further documentation may be requested to improve the understanding of safety hazards.

For each experimental apparatus, the following procedure applies:

- 1- The GLIMOS shall fill in chapters 1 to 4.
- 2- The GLIMOS shall submit this document (ISIEC form) to the PH Unit sps.coordinator@cern.ch and dso-ph@cern.ch
- 3- Recommendations and procedures will follow after the provision of this document. Note that if the experiment is considered to have major safety implications then the CERN HSE unit will become involved and their safety procedures will then be followed.
- 4- A Launch Safety Discussion may be called for by the PH-SO. This will take place on site with representatives of the experiment, PH-SO, the HSE Unit and other CERN Departments.
- 5- A formal 'Safety Clearance' of the experiment must be given prior to the experiment being allowed to start operating (for example to receive beam).

Please note that this form must be completed and sent to CERN prior to the arrival of the planned experiment. Work will not be allowed to start until this form, and any requested complementary information on safety hazards, has been completed and handed over as explained above.

Please complete the following:

NAME OF THE EXPERIMENT: COMPASS (NA58)

Filled out by: OLEG GAVRISHCHUK

Date: 06 AUGUST 2014

INTRODUCTION

The purpose of this document is to provide a description of the experimental program/test beam to be carried out at CERN; i.e.:

- to identify the equipment brought to CERN;
- to identify activities to be carried out at CERN;
- to identify hazards associated to the equipment and activities and the measures to be implemented in order to eliminate, control or mitigate them.

Please enter the information in the empty cells of the tables below:

Role Name Phone/e-mail Spokesperson **Andrea Bressan** +41764879015/Andrea.Bressan@cern.ch Vladimir Anosov +41764870607/Vladimir.Anosov@cern.ch Technical coordinator GLIMOS Gerhard Mallot +41764873425/Gerhard.Mallot@cern.ch **SPS** Coordinator Henric Wilkens 16-3845 spsco@cern.ch DSO-PH Mark Hatch dso-ph@cern.ch Liaison Physicist **Oleg Gavrishchuk** +41764873056/Oleg.Gavrishchuk@cern.ch Michael Lazzaroni +41764872407/Michael.Lazzaroni@cern.ch TSO

1.1 Organization of the Collaboration

1.2 Schedule and location of the experimental apparatus or test beam

Start date:	14 Oct. 2104
Completion date:	24 Oct. 2014
Building/experimental area	157/R012
Beam line/PPE door	T10
Lab/Counting room/Phone	157/R012

DESCRIPTION OF THE EXPERIMENTAL APPARATUS/TEST BEAM

1.3 General description of the experimental apparatus/test beam

Please type a description of the experimental apparatus/test beam and the associated equipment. In order to enable an understanding the layout, add pictures and diagrams whenever possible:

Electromagnetic calorimeter : matrix 3x3 modules, module consists of 3x3 cells

The cell consist from alternative Led+plastic layers with total 16 electromagnetic length. Fibers WLS readout used for light collection to avalanche multi pixel diodes.

The calorimeter setup has total sizes 40x40x50 cm³.

Total calorimeter weight is equal to 200 kg.

Test beam setup of ECAL modules is shown below in Fig.1 and Fig.2.

Fig.1. The test beam layout for ECAL0 modules.

Fig.2. The moving platform is already installed at T10 and will be used as support for ECAL0 modules.

1.4 Description of the installation

Equipment	Availability	Design and manufacturing
[Part 1 of experiment/ equipment]	Existing	To be used without any modification
		To be modified
	New 🛛	Standard equipment supplied by a manufacturer
		CERN/collaboration responsible for the design and/or
		manufacturing
[Part 2 of experiment/ equipment]	Existing	To be used without any modification
		To be modified
	New	Standard equipment supplied by a manufacturer
		CERN/collaboration responsible for the design and/or
		manufacturing
[Part 3 experiment/ equipment]	Existing	To be used without any modification
		To be modified
	New	Standard equipment supplied by a manufacturer
		CERN/collaboration responsible for the design and/or
		manufacturing

Complete the cells below and double click on the boxes and check as appropriate.

1.5 Hazards generated by the experimental apparatus/test beam

Identify the hazards associated to each part of the experiment and the associated equipment that is to be integrated in the experimental apparatus/test beam. Double click on the boxes and check as appropriate. Provide comments or values under the description.

Domain	Hazards/Hazardous Activities	Description
	Pressure	[pressure] [bar]; [volume] [l]
	Vacuum	
	Lifting equipment	
	Machinery / Machine Tools	
Mechanical Safety	Mechanical energy (moving parts)	
	Mechanical properties (sharp, rough, slippery)	
	Industrial Vehicles	
	Hot Work (e.g. welding, grinding)	
	Hot/cold surfaces	

	Vibration		
Cryogenic Safety	Cryogenic fluid		[fluid] [phase] [m3]
Structural	Shielding Walls		
Safety	Specific actions/conditions		
	Electrical equipment and installations	\boxtimes	220] [V], [5] [A]
Electrical and Electro-	High Voltage Equipment	\boxtimes	2000 [V]
magnetic Safety	Magnetic field		[magnetic field] [T]
e aj coy	Equipment in potentially explosive atmospheres		
	Hazardous chemical agent (HCA)		[chemical agent], [quantity]
	CMR (carcinogens, mutagens and substances toxic to reproduction)		
	Toxic/Harmful		[fluid], [quantity]
	Corrosive		[fluid], [quantity]
	Oxidizing		[fluid], [quantity]
Chemical	Flammable		[fluid], [quantity]
Safety	Potentially explosive atmospheres		[fluid], [quantity]
	Irritant		[fluid], [quantity]
	Asphyxiant		[fluid], [quantity]
	Nanomaterial's		
	Dangerous for the Environment		
	Asbestos		
Biological	Legionella		
Safety	Biological Agents		
Non-ionizing	Laser, class		
radiation Safety	Radiofrequency		

	Microwaves	
	UV light	
	Electromagnetic (Frequency & Field strength)	Hz, Vm ⁻¹
	Excessive Noise	
	Temperature constraints (non-comfortable)	
	Insufficient Lighting	
	Indoor Air quality (e.g. clean rooms)	
	Confined space	
	Work at height	
Workplace	Obstructions in passageways	
	Lone working	
	Falling objects	
	Internal Traffic (e.g workshops, experiments)	
	Slippery/unstable ground	
	Working outside normal working hours	
	Usage/storage of potentially polluting substances (gases, liquids, solids)	
	Emissions of substances into the atmosphere	
	Discharge of effluents to the site drainage (i.e. infiltration water, rain water, cooling water)	
Environment	Discharge of effluents to sewage (i.e. sanitary water)	
	Activated or radioactive soil	
	Polluted or contaminated soil	
	Emission of noise harmful for the environment	
	Vibrations harmful for the environment	
	Odours	

6

	Waste generation	
	Significant consumption of resources (e.g. water, electricity gas, fuels,)	
	Construction & dismantling activities	
Worksite	Co-activity	
	Hot works	
Fire Safety	Combustible Materials	
	Ignition sources	
	Target material	
	Beam particle type	
lonizing Radiation	Beam intensity	
	Beam energy	
	Source	

Table 1 - Hazard identification

Include below a table of any other hazards that may be present – if applicable.

DESCRIPTION OF THE ACTIVITIES CARRIED OUT AT CERN

1.6 Description of installation activities

Please type below a description, with explanations as necessary, to provide an understanding of the *installation* activities, i.e.: handling procedures, handling equipment needs (mobile cranes...):

The installation of ECAL in the beam position take time ~12 hours an should be done without cranes.

1.7 Description of the operation

Please type a description, with explanations as necessary, to provide an understanding of the <u>operation</u> <i>of the experimental apparatus.

ECAL , scintillation counter and Sci Fi horoscope installation in beam line , pulling the cables in barack – are the main operation in experimental area.

1.8 Description of the maintenance

Please type a description, with explanations as necessary, to provide an understanding of the maintenance activities related to the experiment/equipment.

SAFETY ASSESSMENT

For the key identified hazards of an experimental apparatus and activity, measures shall be taken in order to eliminate, control or mitigate them. The table below shall contain the list of the key hazards and the measures that are to be implemented.

Key hazards identified	Location	Measures to be implemented

8

ROLES AND RESPONSABILITIES

1.9 GLIMOS

According to the § 5.4 of the Safety Policy at CERN (SAPOCO): "For Safety matters, an experiment or test is represented by a Group Leader in Matters of Safety (GLIMOS), who is responsible for Safety, with the necessary authority, from the design stage and subsequently throughout the development, construction, and operational stages of the equipment until it is finally dismantled and correctly disposed of".

In the absence of an appointed GLIMOS, all his duties and responsibilities fall automatically on the Technical Coordinator or, if one does not exist, to the Spokesperson.

1.10 HSE Unit

According to the § IV of the Mandate of the Occupational Health & Safety and Environmental Protection Unit (HSE):

"The HSE Unit provides Safety clearance for activities, special equipment, installations, experiments and projects with **major Safety implications** prior to design, operation or dismantling activities".

For experiments less than 3 weeks duration, and if there are no major safety implications, then the PH-SO procedure will be followed (the ISIEC form and formal safety clearance by PH-SO).

1.11 TSO

According to the Safety Guide for experiments at CERN the task of Territorial Safety Officers is to watch over the safety of and in the region or building(s) under their responsibility, thereby ensuring that no part of the CERN site(s) escapes safety surveillance. However, the character of the various regions differs considerably, and consequently also the roles of the TSOs. We shall in this guide limit the considerations to those TSOs that are responsible for either experiment areas or buildings housing experiment support labs/workshops.

SAFETY CLEARANCE

The procedure for the safety clearance will depend on the type and duration of the experiment and whether or not there are major safety implications. In all cases a formal safety clearance is a requirement before an experiment can start operating

PS/SPS PHYSICS COORDINATOR

The PS/SPS physics coordinator establishes the AD/PS/SPS user schedules, represents the users at the different scientific and technical committees, being the contact person for both the accelerator groups and the experimental users. He also reports to the CERN management.

*** ***

ANNEX

Terms	and	abbrev	iations	in	Enalish
	unu	abbiev	lacions		Linghisti

CSHS	Special Health and Safety Committee
CSO	Cryogenic Safety Officer
CSOC	Cryogenic Safety Officers' Committee
DSO	Departmental Safety Officer
DSOC	Departmental Safety Officers' Committee
FGSO	Flammable Gas Safety Officer
FGSOC	Flammable Gas Safety Officers' Committee
GLIMOS	Group Leader In Matters Of Safety
HSE	Occupational Health & Safety and Environmental Protection Unit
PH-SO	Physics Department Safety Office
RSO	Radiation Safety Officer
SAPOCO	SAfety POlicy COmmittee
SLIMOS	Shift Leader In Matters Of Safety
TSO	Territorial Safety Officer