A complete experiment for GPDs Measurements using COMPASS at CERN after 2010

Hard exclusive production of mesons $(\rho, \omega, \phi, \dots, \pi, \eta, \dots)$ selection of γ_1^* (SCHC for ρ) separation of H,E (with ρ, ω, ϕ ...) and $\widetilde{H}, \widetilde{E}$ (with π, η ...) guark flavor H^u, H^d, H^s... quark gluon contributions Deeply virtual Compton scattering (+BH) if E_{μ} (or $x_{b,j})$ is large: DVCS >> BH $\Rightarrow \sigma_{DVCS}$ if not \Rightarrow interference DVCS.BH

$$\sigma^{\bar{\mu}+} + \sigma^{\bar{\mu}-} \sim Im H(x = \xi, \xi, t)$$

$$\sigma^{\bar{\mu}+} - \sigma^{\bar{\mu}-} \sim P \int_{-1}^{+1} dx \frac{H(x, \xi, t)}{x - \xi}$$

Deeply Virtual Compton Scattering Beam Charge Asymmetry (BCA) measured with the 100 GeV muon beam at COMPASS

Complementarity of the experiments in the world

General requirements

The highest luminosity

Nµ=2.10⁸ per SPS cycle (Radio Protection limit) duration 5.2s repetition each 16.8s

With a new 2.5m long liquid hydrogen target \Rightarrow L=1.3 10³² cm⁻²s⁻¹

In 2011, with the Linac4 what could be the limitation? What is the impact of an increased intensity on the detectors?

Precise absolute luminosity measurement

With NMC it has been achieved within a 1% accuracy

The integrated muon flux is measured continously by 2 methods

- 1) By sampling the beam with a random trigger (α emitter Am²⁴¹)
- 2) By sampling the counts recorded in 2 scintillator hodoscope planes used to determine incident beam tracks

The beam tracks are recorded off-line, in the same way as the scattered muon tracks to determine the integrated usable muon flux

To test again for meson production

μ + and μ - beams

Requirements:

-same energy

- -same and maximum intensity
- -opposite polarisation to a few %

Solution proposed by Lau Gatignon:

1) To select $P_{\pi}=110GeV$ and $P_{\mu}=100GeV$ to maximise the muon flux

- 2) To keep constant the collimator settings which define the π and μ momentum spreads (fixed Collimators 1H and 3H and Scrapers 4V and 5V)
 ⇒ Pol μ+=-0.8 and Pol μ-=+0.8
- 3) To fix Nµ-~2.10⁸ per SPS cycle with the 500mm Be T6 target
- 4) To use a shorter target to find also Nµ+~2.10⁸ per SPS cycle

Necessity to complete at large angle the high resolution COMPASS spectrometer

exclusivity of the reaction

Resolution needed

At these energies (for $\mu,\ \mu',\ and\ \gamma$) the missing mass technique is not adapted

$$\Rightarrow \quad \Delta M^2_{observed} > 1 \ GeV^2$$

Need of a recoil detector to insure the exclusivity

Competing reactions to DVCS

DVCS: $\mu p \rightarrow \mu p \gamma$ HE π° P: µp \rightarrow µp π° └→ νν Dissociation of the proton: $\mu p \rightarrow \mu N^* \pi^\circ$ $4N\pi$

DIS: µp →µpX with 1γ , $1\pi^{\circ}$, $2\pi^{\circ}$, η ...

Beam halo with hadronic contamination Beam pile-up Secondary interactions **External Bremsstrahlung**

with PYTHIA 6 1

Tune parameters:

-maximum angle for photon detection 24° -threshold for photon detection 50MeV -maximum angle for charged particle detection 40°

Additional equipment to the COMPASS setup

A possible solution:

(proposed in the Workshop on the Future Physics at COMPASS 26 Sept 2002)

Goal of the JRA in the EU FP6: Realisation of a prototype detector consisting of a 45° sector

Key role of the Calorimetry

ECAL2 from 0.4 to 2° ECAL1 from 2 to 10°

mainly lead glass GAMS good energy and position resolution for 2 photons separation in a high rate environment

ECALO from 10 to 24° to be designed for background rejection

> Intensive Study of photon and piO production

Requirements for a recoil detector @ COMPASS

Relation between ToF resolution and dP/P

If ToF resolution = 200ps

dt/t ~2 dP/P

challenges for the JRA

 \rightarrow 200ps

 \rightarrow

Tests in 2001 L_{A} =40, L_{B} =70cm $\Delta \Phi$ =2 $\pi/48$

σ**(ToF)=300ps**

 $\sigma T_{B(t=5cm)}$ =180±30ps

 $v_A = 13 \text{ cm/ns} \rightarrow dz_A = 1.9 \text{ cm}$ $v_B = 19 \text{ cm/ns} \rightarrow dz_B = 1.7 \text{ cm}$

Goal of the prototype $L_A = 280, L_B = 400 \text{ cm}$ $\Delta \Phi = 2\pi/24$

 $\rightarrow 140ps!$ $\rightarrow 140ps \qquad \qquad Limitation obtained with CLAS: 190-250ps \\ L= 3 to 4 m, t=5cm$ $\rightarrow 1.0cm$

with 2.10⁸ μ/spills N_A= 1MHz (δrays) N_B=0.2MHz

 \rightarrow 1.3cm

Analyse of the pulse shape with an Analogue Ring Sampler (ARS)
 Use of look-up table (extension of the COMPASS coincidence matrix)

A lot of work remain to be done ...

Improvement of the limits of the experiment large Q2 range tmin and tmax, good resolution in t

Investigation of all the channels: DVCS, HEMP, DDVCS...

Simulation Fast Monte Carlo Complete GEANT + all backgrounds → efficiency determination

> First draft for « Outline for GPDs measurement using COMPASS at CERN »

to be found in dhose/public/villars_020704.ps

...

