Shadowing Effects in Nuclear Parton Distributions

G. Smirnov

G. Smirnov

Items

- Introduction
- **Experimental status**
- Theoretical status
- **Open problems**
- Summary

Introduction

Experiment

- Overwhelming number of low and high energy reactions do not know anything about the size of the nucleon
- Nuclear shadowing might be most suitable laboratory for studying the role of nucleon topology for PDF

Theory

- Momentum space considerations and light-cone approach are equally successful in describing the shadowing effects within experimental errors.
- Which technique is most adequate when experimental precision increases?

Parton fusion process

- Geometrical parameters that might be involved in the overlap of partons in a nucleus:
 - R_A nuclear radius
 - *R_i* internucleon spacing
 - R_N nucleon radius

Experimental status

Figure 2: HERMES: Cross section ratios ${}^{13}{\rm H/D}$ versus $Q^2.$

 Including into the analysis high statistics data from SLAC and BCDMS one obtains that the independence of nuclear effects on Q² is well justified in the range

$$1 < Q^2 < 200 \text{ GeV}^2$$

Both statistical and systematic errors are high if x < 0.05

Bjorken x Dependence (experiment)

Best data on the shadowing in ⁴He : NMC (and SLAC)

- Poor statistics around x ≈ 0.1
- No data below $x = 3 \cdot 10^{-2}$

Shadowing in ³He

³He – Not conclusive yet

To be reckoned: **D** is not a free nucleon target as many assume

Onset of the shadowing

 Nucleon size is not considered to be a world constant – still there is something universal in the shadowing onset:

 $x_1 = 0.0615 \pm 0.0024$

independent of Q^2 and Aif A > 4

The onset is determined by the number *n* of overlapping nucleons:

n = 2.98 ± 0.08

Theoretical status Q² Dependence (QCD model)

Valence Quarks:

- Virtually no Q² dependence for x > 0.001 (mainly from data)
- Weak Q² dependence for x
 < 0.001 (QCD extrapolation)

Gluons:

 Strong Q² dependence (QCD)

> EKS – Eskola et al. 1 – $Q^2 = 2.25 \text{ GeV}^2$

 $2 - Q^2 = 10^4 \text{ GeV}^2$

G. Smirnov

Open problems

- No data for the shadowing in the lightest nuclei from the same experiment ($A \le 4$).
- Is it topology of nuclear forces or rather QCD dynamics, which is responsible for the build up of the shadowing ?
 - Onset of the shadowing
 - Why n = 3 for medium and heavy nuclei ?
 - No data on **A** dependence of the onset in the range
 - of $A \leq 3$, poor statistics for A = 4.
- Too poor statistics for medium-weight nuclei to constrain QCD evolution in the range of X < 0.05.

Summary

- Partons know about nucleon and nuclear size a lot more than we do
- Shadowing is not necessary the effect of nuclear environment
- New experiments on the lightest nuclei are indispensable for the understanding of relations between nucleon topology and QCD dynamics.