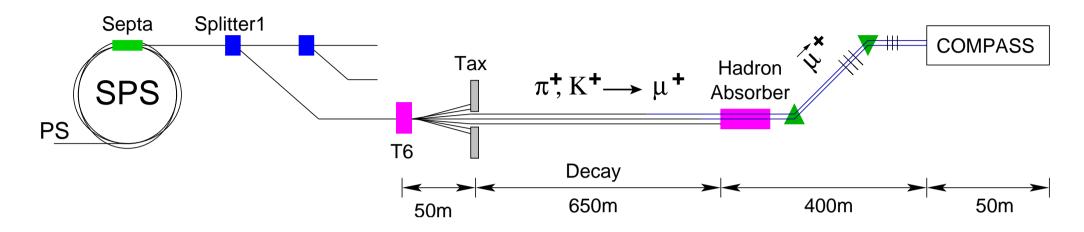
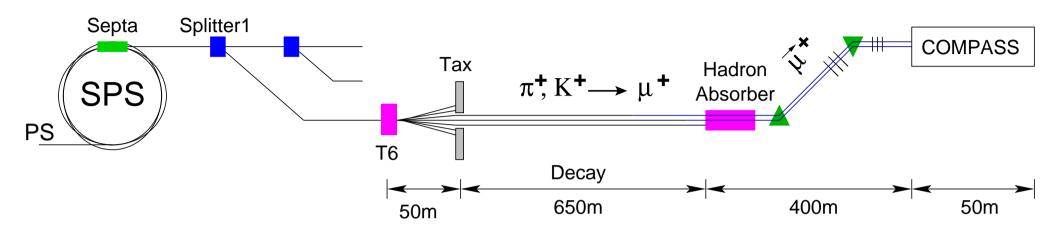
The M2 Beam Line


L. Gatignon, M. Leberig

with help from

D. Forkel–Wirth (SC) and J. Wenninger (AB)

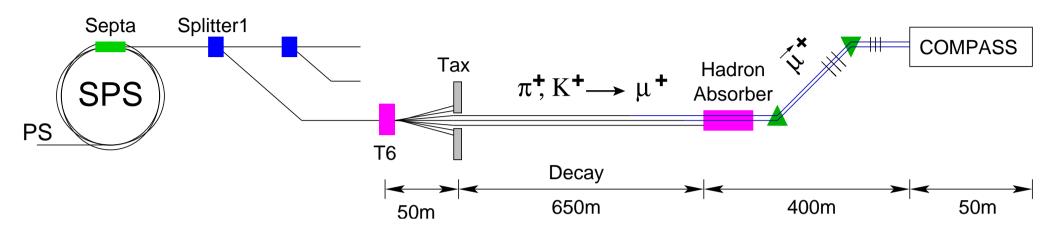

- From SPS protons to muons in COMPASS
- Consequences and limitations for 10 times more muons
 - In the muon part of the beam line
 - In the proton and hadron part of the beam line
- Summary/ Questions

From Protons in the SPS to Muons in COMPASS

- Beam extraction from SPS to the north (TT20) is done with three septa
 - One electro-static septum
 - Two magneto-static septa
- The extracted beam is then shared between the three main experimental halls: EHN1 (test-beam), EHN2 (Na58), EHN3 (Na48) by the means of splitter magnets
- SPS intensity: $190 \cdot 10^{11}$ protons about $125 \cdot 10^{11}$ for T6 = COMPASS

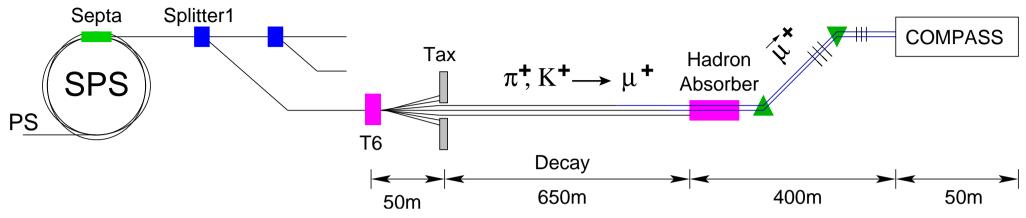
From Protons in the SPS to Muons in COMPASS

- T6 contains a set of air cooled beryllium targets with different lengths (4, 10 and 50 cm = $5/4 \lambda_I$)
- Tax1 and 2 are movable 3.2 m absorbers
 - Remove all unwanted particles
 - Block all hadrons in case of access
 - With bend1 and Collimator 1/3 selection of momentum
- Beam momentum station around bend 6

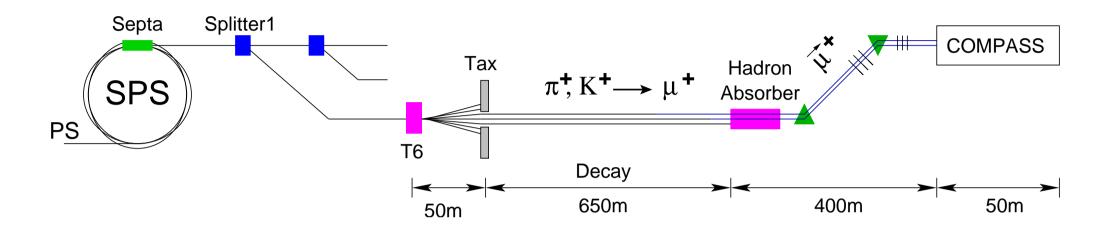

The High Intensity Scenario

What kind of limits will we meet if we would increase

the muon intensity to
$$2\cdot 10^9$$
 per spill?


Let's start at the end, assuming that producing this muon flux is no problem

1st Limit: Radio protection (legal limit)

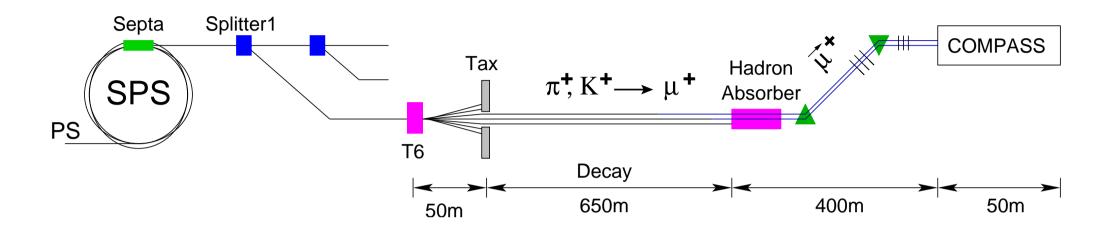

- Radiation level at the CERN fence 700 m after Bend 6. Two components:
 - Direct beam component passing 500 m of earth
 - Halo component missing bend 6 (33 mrad)
 - Limits: $10 \,\mu \text{Sv}/\text{a}$ integral, 0.5 $\mu \text{Sv}/\text{h}$ peak \Rightarrow to be measured this year
- Radiation levels in TT20
- \Rightarrow Beam line study needed (beam losses, possible accidents,...) no manpower from SC before September

2nd Limit: Beam Halo

- Today we have about 25% of the muon intensity as halo (outside a 4 cm diameter region around the beam).
- Halo Sources are believed to be:
 - Scraper 4 & 5 which define p_{μ} and Δp_{μ}
 - Halo π can produce halo μ
 - Where does the halo component parallel to the beam come from?
- Halo studies needed (both MC and Measurement). Was already done when upgrading M2 for SMC. More beam diagnostics? More MIBs (1 MIB = 500 kCHF)?

3rd Limit: Beam Momentum Measurement

- Single strip rates: now 1 MHz
- Time window to scifi: $4 \text{ ns} \Rightarrow \text{now } 15 \%$ double hits
- Time information not enough to connect momentum and track \Rightarrow beam tracking needed (would be also helpful for beam diagnosis).

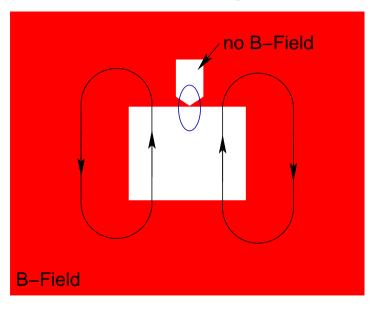

The High Intensity Scenario

What kind of limits will we meet if we would increase

the muon intensity to $2\cdot 10^9$ per spill?

Let's move to the proton/ hadron section of the beam line. Here I have to make an assumption to estimate the necessary increase on the proton flux. In a very optimistic scenario with e.g. $E_{\mu} \leq 100 \,\text{GeV} \, 600 \cdot 10^{11}$ protons/spill (5 times todays flux) could be sufficient.

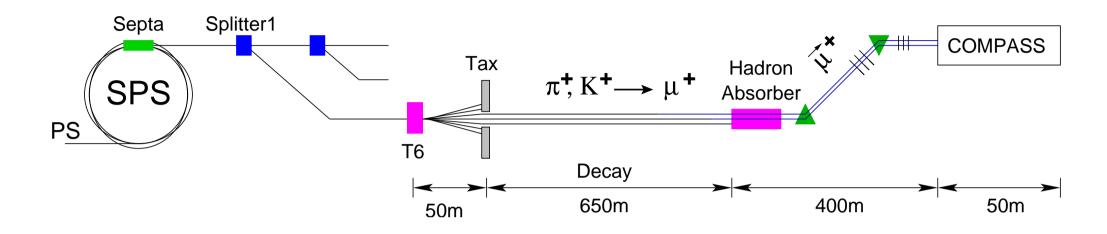
4th Limit: Proton Rate on T6 and Tax


- For the moment T6 is believed to impose the strictest limit on the proton flux: built for $100 \cdot 10^{11}$ protons/spill
- The tax system has also to be able to absorb the full beam
- It is excluded that these systems can handle a 5 times higher beam intensity
- Calculation of the limits should be done (Lau)

4th Limit: Proton Rate on T6 and Tax

5th Limit: Splitter Magnets

Splitter Magnet



- The splitter magnets cause a beam loss of 10% \Rightarrow radiation
 - Corrosion/ destruction of cables and vacuum elements
 - Decrease of maintainability
- Problems if almost all beam goes to T6:
 - The aperture of splitter not big enough \Rightarrow new beam optics?
 - Instable beam for the other targets
- Improvement of beam diagnostics (e.g. more beam loss monitors)
- Exchange of splitters?

5th Limit: Splitter Magnets

6th Limit: Septa

• Also for the Septa nobody knows how far they can work as they have never been operated at higher intensities than today.

6th Limit: Septa

Summary

- Increasing the muon intensity is not for free. There are two levels:
 - 1. In a very optimistic scenario with $E_{\mu} \leq 100 \,\text{GeV}$ an increase by a factor of 2 might be possible without major changes in the hadron/ proton section.
 - 2. A higher increase would cause major change of the TT20
- In all cases work has to be invested in the study of the beam line (MC and measurement) and on the radiation protection sector
- We must decide now, which way to go (option 1 or 2) and what should be the prepared for the "Vilar paper". Time is short and there is not much manpower (Lau, ...?)
- Input needed from physics working groups to nail down the wanted beam parameter.
- More issues and requests towards the beam: Improve focus, ...
- No "show-stopper" identified yet