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Abstract

The general description of polarized Drell-Yan process is presented in the article by
Arnold, Metz and Schlegel [1]. Since at COMPASS we can have only target nucleon
polarized, here we consider only the reaction with unpolarized beam and polarized
target. We present the simplified expressions for general expression of cross-section
in one photon approximation, the leading order parton model expressions for struc-
ture functions. We define also the asymmetries and present the expressions for
statistical error calculations in the case of flat acceptances.

1 Description of Drell-Yan processes

Here we will describe the notations, choice of reference frames and the general
expression for Drell-Yan cross-section closely following the article by Arnold, Metz and
Schlegel [1]. Since at COMPASS we will not have a polarized beam here we consider only
the reaction with unpolarized beam (H,)and polarized target (H,)

Ho(Py) + Hy(Py, S) = v () + X = I"() +17(I") + X (1)

where Pj(9) is a momentum of beam (target) hadron, ¢ = +1', [ and I’ are the momenta
of virtual photon, lepton and anti-lepton and S is four-vector of the target polarization.

1.1 Kinematic variables in different reference frames
Several frames are commonly used in description of Drell-Yan processes:
— Target rest frame (TF) where the the unit vectors of coordinate system are chosen
as follows: Z is chosen along beam momentum, & — along virtual photon transverse
to beam direction component and ¢y = Z x 2. Then

PffTF = (E,0,0, P13,TF)7 (2)
PIffTF = (Mb> 07 07 0)7 (3)
q%F = (qO,TFa qr, Oa qL,TF>7 (4)
- (o, 15| cos bg, S| sin s, 5L> , (5)

— Initial hadrons center of mass frame (CM) obtained by Lorentz boost in the direction
opposite to beam hadron momentum.
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where s = (P, + B,)? is the total energy squared in the incoming hadrons CM
frame!).

— Collins—Soper frame (CS) can be reached from CM or TF by two subsequent Lorentz
boost. In a first step one boosts along the z-axis such that the virtual photon no
longer has a longitudinal momentum component. In a second step one boosts along
the x-axis such that also the transverse momentum of the virtual photon disappears.
Neglecting the leptons mass the lepton and anti-lepton momenta in this frame are

given as
Ihe = g(l, sin 6 cos ¢, sin @ sin ¢, cos 9) , (10)
Ity = g(l, —sinf cos ¢, —sinf sin ¢, — cos 0) . (11)

In following as angular variables we will use the azimuthal angle of the target trans-

verse polarization in TF, ¢g, and polar and azimuthal angles of lepton momentum in CS
frame, 0 and ¢.

1.2 General expression for cross-section

The general form for Drell-Yan cross-section expressed in above mentioned angular
variables is derived in [1]. We are interested by the case when only target nucleon is
polarized. In this case the general expression can be presented as
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where F' = 4\/ (P, - Py)? — M2M? represents the flux of incoming hadrons and the solid
angle €2 specifies the orientation of the lepton. In general, the structure functions depend
on the three independent variables, for example, the Lorentz invariant ones P, - q, B, - q,
and ¢%, ie., F} = FYXP,-q, B, - q, ¢°) and so on and do not depend on lepton polar
angle 6 and azimuthal angles ¢ and ¢g. In Eq. (12) the subscript of structure function
corresponds to polarization state of target nucleon (U for target polarization independent
contribution, L and T for contribution from target longitudinal and transverse polariza-
tions) and superscript — to azimuthal modulation. We have used the following relations

) Note that with our notation in Eq. (5) the sign of zeroth and third component of spin four-vector in
Eq. (9) is opposite to that used in [1]. This brings to change of sign in Eq. (25) comparing with the
sign in [1].



with the structure functions introduced in [1]:
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1.3 Definition of azimuthal asymmetry observables
Factorizing in Eq. (12) the part of cross-section which survives after integration over
azimuthal angles ¢ and ¢g

oy = (F} + F3)(1 + Apcos® 0), (14)

we can rewrite the general expression in the form
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Dy = 14 A} cos? 6

In analogy with polarized SIDIS case we will call Dy depolarization factors. The asym-

metries Aéiq}s ) are defined as
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For unpolarized azimuthal asymmetries often differen notations are used: A = A}, p =
A% and v = 2452 In LO QCD parton model the asymmetries are directly related
to convolutions of LO TMD PDFs, see Sec. 1.4.

We conclude this section by noting, that when one integrates over the lepton az-
imuthal angle ¢, only one azimuthal asymmetry survives in Eq. (15), namely, the trans-
verse spin dependent sin ¢g asymmetry.



1.4 Leading order QCD parton model

The structure functions entering in Drell-Yan precess cross-section can be expressed
at high energies (s%,¢> > M2 M?) and small transverse momentum of virtual photon
(gr < q) as a convolution over TMD DFs [1]. We adopt the the following notation for
the convolution of TMDs in the transverse momentum space:
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where N, = 3 is the number of colors, the argument of PDF's
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can be interpreted as the fractions of light-cone momentum of partons from initial hadron
H, and Hy. Then using the unit vector h = ¢r/qr one eventually finds the following LO
structure functions in the CS-frame:
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As one can see from Eqs. (20-31), 6 out of 12 structure functions describing single polarized
Drell-Yan process vanish at twist-two. In this approximation

650 = Fl(1 + cos® ), (32)

and Eq. (15) simplifies to
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and the depolarization factors at LO depends only on lepton polar angle 6:
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For completeness we present here also the expressions for nonzero asymmetries at LO:

Fcos2¢
cos 2¢ _ U
) Fsin2¢
AT*(LO) = —E—, (35)
FU
sns - P}
AT (LO) = AT (LO) = 71
FU
in(26-+bs) F;in(2¢+¢s)
ARl (Loy = T 36
019 (10) . (36)
) FSin(2¢—¢S)
ASn20-65) 1) — LT

In principle with longitudinally and transversely polarized targets COMPASS will
be able to extract all 12 structure functions. The simple interpretation of these structure
functions within LO QCD parton model is possible only for 6 of them. We see from Egs.
(23), (25), (26), (30) and (31) that the measurement of asymmetry

— A® 2% gives access to Boer-Mulders functions of incoming hadrons,
— ASLinZQ5 — to Boer-Mulders functions of beam hadron and hi; function of the target

nucleon,
— A5  to Sivers function of the target nucleon,
— A?H(2¢+¢s )~ to Boer-Mulders functions of beam hadron and hiz (pretzelosity) func-

tion of the target nucleon,

— AJr9795) _ o Boer-Mulders functions of beam hadron and h; (transversity) func-
tion of the target nucleon.

Within QCD TMD PDFs approach the remaining asymmetries can be interpreted as

higher order in g7 /q kinematic corrections and as contribution of non-leading twist PDF's.

1.5 Statistical error estimation of asymmetries

Here we will present the simple expressions for LO asymmetry extraction and sta-
tistical error estimations assuming for simplicity flat acceptance of COMPASS apparatus
in azimuthal angles ¢g, ¢ and cos . We will take into account so called dilution factor, f,
which describes the relative number of polarizable nucleons in the target material. From
Egs. (32) — (34) after integration over the virtual photon transverse momentum gy and
lepton polar angle 6 the azimuthal angles distribution in a given bin (say (z4,xp) bin) is
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where the total number of event in the given bin (z,, x;)

do
dx, dxy dgz dps dcos O do’
Note that in Eq. (37) the relative contribution of virtual photon depolarization factors
DL , after integration of Eq. (33) over 6 are equal to 1/2 for flat in 6 acceptance.

To single out different asymmetries one can use the Fourier projection on corre-
sponding modulation:
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Finally, the statistical accuracy for asymmetries are given as
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2) We have used the relation d*q = (s/4) dz, dxy, dg? dos.
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