Ideas for a Muon Trigger in the First COMPASS Spectrometer

A. Ferrero aferrero@to.infn.it

Drell-Yan Workshop, Torino, March 05-06 2007

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo \rightarrow high granumarity for good target pointing
- Large surface: \sim 5 \times 4 m²
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

・ 同・ ・ ヨ・ ・

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo \rightarrow high granumarity for good target pointing
- Large surface: \sim 5 \times 4 m²
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

マイロ マイト・

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo → high granumarity for good target pointing
- Large surface: $\sim 5 \times 4 \ m^2$
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

• • • • • • • • • • • •

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo → high granumarity for good target pointing
- Large surface: $\sim 5 \times 4 \ m^2$
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

< /₽> < ∃>

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo → high granumarity for good target pointing
- Large surface: \sim 5 \times 4 m²
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

▶ ★ 同 ▶ ★ 臣 ▶

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo → high granumarity for good target pointing
- Large surface: \sim 5 \times 4 m²
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

• • • • • • • • • • • •

- A large fraction of DY muons are detected in the first spectrometer only
- Small production cross section → high beam intensity and high trigger purity required
- Trigger must be able to separate DY muons from halo → high granumarity for good target pointing
- Large surface: \sim 5 \times 4 m²
- Can we make use of existing hardware?
- The Muon Wall 1 system satisfies all above requirements, but...it is slow (~ 100 ns signal time jitter)

▲ □ ▶ ▲ 三 ▶ .

The Muon Wall 1 system

- The basic detector element is the Mini Drift Tube (MDT)
- Vertical (X) and horizontal (Y) planes are formed by ~ 60 MDTs each
- Two stations of 4X and 4Y planes sorround a 60 cm thick hadron absorber

Muon impact angle (real data)

- Muons can be identified from specific patterns of fired channels in the detector planes downstream of the absorber
- The angular resolution is of about 3 degrees
- Halo muons hit the detector almost perpendicular and can be recognized/ rejected
- Angular resolution can be improved by an approximate measurement of the dritf time

- Muons can be identified from specific patterns of fired channels in the detector planes downstream of the absorber
- The angular resolution is of about 3 degrees
- Halo muons hit the detector almost perpendicular and can be recognized/ rejected
- Angular resolution can be improved by an approximate measurement of the dritf time

- Muons can be identified from specific patterns of fired channels in the detector planes downstream of the absorber
- The angular resolution is of about 3 degrees
- Halo muons hit the detector almost perpendicular and can be recognized/ rejected
- Angular resolution can be improved by an approximate measurement of the dritf time

▲ (型) ▲ 注) →

- Muons can be identified from specific patterns of fired channels in the detector planes downstream of the absorber
- The angular resolution is of about 3 degrees
- Halo muons hit the detector almost perpendicular and can be recognized/ rejected
- Angular resolution can be improved by an approximate measurement of the dritf time

< (**1**) > < ∃ >

Trigger logic can(?) be implemented into FPGA-based hardware

- The front-end discriminator outputs can be directly fed to the FPGA
- Few components needed → high concentration of channels
- Virtex4 FPGAs:
 - high computing power
 - large number of input pins
 - high clock frequencies
 - independent programmable delays for each input

Integration in the Readout

ヘロト 人間 とくほとくほとう

æ

Integration in the Readout

Outlook

The next steps in the project are:

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics

- Validate the algorithm using MC simulations and real data
- Estimate expected background rates
- Implement the algorithm into an FPGA firmware
- Build a prototype trigger board and test it with the small MW1 prototype and cosmics