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1 Introduction

COMPASS is a high-energy physics experiment at the Super Proton Synchrotron (SPS)

at CERN. The present purpose of this experiment is to study the spin structure of the

nucleon with the prime goals to determine the contribution of the gluon polarization to

the nucleon spin and to perform a first measurement of the transversity structure function.

The experiment was constructed in 1998-2000 and commissioned in 2001. The first physics

run took place in 2002. After the 2004 run the experiment will continue after the CERN

accelerator shutdown. The COMPASS collaboration comprises about 200 physicists from

26 institutes and 12 countries.

2 The COMPASS spectrometer

2.1 Spectrometer concept

The COMPASS detector is conceived as a two-stage spectrometer (Fig. 2.1). The large-

angle spectrometer (LAS) just downstream of the target covers an aperture of ±180 mrad

while the small-angle spectrometer (SAS) subsequently detects particles within the inner

±30 mrad. Both sections comprise magnets SM1 and SM2 providing field integrals of 1

and 4.4 Tm, respectively. Tracking in the beam region is provided by scintillating fiber

(SciFi) and silicon detectors and in the intermediate region up to 20 cm from the beam by

MicroMeGas and Gem detectors. Large area outer tracking is covered by drift chambers

(SDC, W45), multi-wire proportional chambers (MWPC), and straw tubes. Iarrocci-

type tubes (MW1) and drift tubes (MW2) track the muons downstream of the hadron

absorbers.

The trigger system is based on the scattered muon. Information from 8 trigger scintillator

hodoscopes located in the SAS and from both hadron calorimeters from within 600 ns a

trigger signal on the basis of target pointing and energy transfer.
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Figure 2.1: The COMPASS spectrometer in 2002

2.2 The Polarized target

COMPASS uses solid polarized proton and deuteron targets in the muon program. The

target material is 6LiD (see Fig.2.3). The nuclear spins are polarized with dynamic nuclear

polarization (DNP), based on microwave saturation of impurity electron spins near their

paramagnetic resonance in a 2.5 T longitudinal field. The two target cells have the length

of 60 cm and a diameter of 3 cm and they are polarized in opposite directions. The
3He/4He dilution refrigerator reaches temperatures of 50 mK in frozen spin mode.

Figure 2.2: The polarized target
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Figure 2.3: Target material: LiD or LiH

3 Dynamic Nuclear Polarization

3.1 The basic principle of DNP

The (vector) polarization P of a spin system with spin I and magnetic moment µ under

the conditions of thermal equilibrium is given by the Brillouin Function BI

P =
〈I〉
I

=
N(I) − N(−I)
∑m=+I

m=−I N(m)
= BI

( µB

2kT

)

(3.1)

wherein B and T are the external magnetic field and the temperature. From the last

equation (3.1) it is clear that, in order to obtain a sizable polarization of the spin system,

the ratio of the magnetic energy µB and the thermal energy kT has to be as large

as possible. In the case of a nuclear spin system a magnetic field of some Tesla and a

temperature in the order of 1 K produces a polarization only a fraction of a percent, unlike

an electron spin system for which these conditions are sufficient for an almost complete

alignment of the spins. This is because the magnetic moment of a nucleus is three orders

of magnitude lower than that of an electron.

In these cases, in order to avoid to push the field and temperature values to its technical

limits, the technique of dynamic nuclear polarization is used, in which at moderate mag-

netic fields and temperatures the high electron polarization is transferred to the nuclei

via a microwave induced excitation of coupled electron-nucleus Zeeman transitions. For

that a certain amount (∼ 10−3 per nucleus) of unpaired electrons have to be implated

into the otherwise diamagnetic solids, either via chemical doping or by an exposure of the

substance to ionizing radiation.

3.2 The mechanisms of DNP

Unpaired electrons in a solid state host material experience several different interactions

with different strength from one material to the other. These effects are:

1. Anisotropy of the g-factor due to a non-vanishing angular momentum of the un-

paired electron.
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2. Hyperfine interaction of the unpaired electron with one or more adjacent spin car-

rying nuclei.

3. Dipole-dipole interaction among the unpaired electrons.

In general all three interactions appear at the same time and they lead to a broadening

of the Zeeman transition energy, when the electron system is exposed to an external

magnetic field. Accordingly the ESR line appears as a complicated superposition of the

individual effects.

There are several models which try to describe the DNP properties of the material Which

one is the more correct in each case is given by the relation between the width σ of the

ESR line and the size of the nuclear Larmor frequency ωI . Only when σ � ωI it is

possible to excite the forbidden transitions | ↓↓ 〉 → | ↑↑ 〉 and | ↑↓ 〉 → | ↓↑ 〉 in the four

level scheme of the solid effect separately. In this case the microwave frequencies leading

to the highest nuclear polarization values are given by the electron Larmor frequency plus

or minus the nuclear Larmor frequency.

If this condition is not fulfilled, both transitions take place simultaneously and the final

nuclear polarization is not only lower but the corresponding ’optimum’ microwave fre-

quencies are located more outside of the electron Larmor frequency. A natural extension

of the solid effect model to the case, in which the NMR line width and the nuclear Larmor

frequency are of similar size, is given by the ’differential solid effect’. In this model it is

assumed that the unpaired electrons can be grouped to ’spin packets’ each experiencing

a different strength of the inhomogeneous interactions.

This model neglects the effect of the homogeneous coupling – the dipole-dipole interaction

– among the electrons themselves, which, though it is only a minor effect concerning the

ESR line shape, it changes drastically the mechanism of dynamic nuclear polarization.

Due to the presence of the dipole-dipole interaction members of different spin packets can

perform mutual spin flips, while the energy difference is compensated by a change of the

dipolar energy. Under the influence of the dipole-dipole interaction the electron system

responds as a whole to both the microwave radiation and the phonon bath of the lattice.

In this case only the spin temperature theory corresponds to the mechanism of dynamic

nuclear polarization.

4 Polarization measurement in the COMPASS po-

larized target

Continuous wave nuclear magnetic resonance is used to determine the target polarization

in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters,

Yale-cards, and VME modules for data taking and system controlling (see Fig.4.1). In

2001 the NMR coils (see Fig.4.2) were embedded in the target material, while in 2002

and 2003 the coils were mounted on the outer surface of the target cells to increase the

packing factor of the material.
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Figure 4.1: The NMR data taking system used in the COMPASS experiment. The coils

are connected to the Liverpool Q-meters with half-wavelength coaxial cables. The Yale-

cards (DC offset card) compensate the DC voltage and amplify detected NMR signals.

The digital part is made of VME-bus modules. These are the 16-bit analog-to-digital

converters (ADC) for signal reading, 12-bit ADCs for DC voltage monitoring in the Yale-

cards and digital-input-output (DIO) board for frequency synthesizer control. The bus

extender is used to send the data to a computer.

4.1 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) exploits the interaction of nuclei with magnetic

fields. A strong static field is applied to polarize the nuclear magnetic moments, time-

dependent magnetic rf fields are used to stimulate the spectroscopic response. In NMR

spectroscopy, the polarizing magnetic field is required to be highly homogeneous. In most

cases, the inhomogeneous part of the field is linearly dependent on space, so that the field

gradient is constant.

The strength of homogeneous static magnetic field B0 is of the order of 0.5-21 T. It defines

the NMR frequency ω0 = 2πν0

ω0 = −γB0 (4.2)

where γ is the gyromagnetic ratio, and B0 is the magnitude of the strong magnetic field

B0. For excitation of the spectroscopic response, a weak, time-dependent magnetic field

Brf perpendicular to the static field is required. When the weak field Brf(t) oscillates

with the nuclear resonance frequency, energy can be transferred from the oscillating field

to the nuclei and vice versa. Typical NMR frequencies are in the rf regime between 10

and 900MHz. The strength of the excitation field is of the order of 1mT and less.

In the COMPASS experiment the strength of B0 is ≈2.5 T, so the NMR frequency is

≈16 MHz for deuterium. The weak field is generated by saddle coils placed around the

target, as described in the following paragraph.
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Figure 4.2: The coil design (a) was used in 2001 (300 nH), (b) 2002 and 2003 (400 nH),

(c) 2002, and (d) 2003.

4.2 Continuous wave NMR system

In the COMPASS experiment a series resonant circuit is made of a coil (see fig 4.2)

surrounding the target material, capacitors and a dumping resistor. Ten parallel circuits

allow simultaneous measurements with the coils placed on the cells. The dynamic nuclear

susceptibility, χ(ω) = χ′(ω)− jχ′′(ω), changes the coil inductance L(ω) = L0(1 + ηχ(ω)).

Here η is the filling factor and L0 is the inductance of the empty coil. χ′′(ω) is seen as

the absorption spectrum in the NMR measurement and the integral of this spectrum is

proportional to the polarization.

Probe coils were designed to tune the circuit to the deuteron Larmor frequency resonance

at 2.506 T, namely 16.379 MHz. The coils are made of Cu-Ni tube with wall thickness of

0.1 mm to reduce extra material in the target.

My task in this project was to calculate the magnetic field produced by one of these

coils in order to estimate the filling factor of the material. In first place, an attempt to

do the calculation analytically was made. This was quite easy for the points being on the

axis of symmetry (z-axis), based on simple principles of geometry and on the fundamental

equation for magnetic field calculations

~B =
µ0

4π

∫ ~I × r̂

r2
dl, (4.3)

wherein ~B is the magnetic field, because of the current ~I of the coil, µ0 is the permeability

of vacuum and r̂ is the unitary vector of distance and r is its modulus. This way, and
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taking the current having a constant modulus, I obtained the following equation for the

magnetic field due to the linear parts of the coil:

~B//(x = 0, y = 0, z) =

√
3

2

µ0I

πR

(

0.06 − z
√

(0.06 − z)2 + R2
+

z√
z2 + R2

)

ĵ (4.4)

Here the z-axis is the symmetry axis of the coil, and R is the radius of the coil (R =

0.015m). The plot of this component of the magnetic field is shown in figure 4.3. Due to
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Figure 4.3: The y-component of the magnetic field as a function of z-coordinate, due to

the linear parts of the coil.

the curved parts, the field was calculated as following:

~B∩(x = 0, y = 0, z) =

√
3

2

µ0IR

π

(

0.06 − z

[(0.06 − z)2 + R2]3/2
+

z

[z2 + R2]3/2

)

ĵ (4.5)

So, in total, the magnetic field on the axis of symmetry is given by the formula:

~B(x = 0, y = 0, z) =

√
3

2

µ0I

π

[ 1

R

(

0.06 − z
√

(0.06 − z)2 + R2
+

z√
z2 + R2

)

+

+ R

(

0.06 − z

[(0.06 − z)2 + R2]3/2
+

z

[z2 + R2]3/2

)

]

ĵ (4.6)

As one can notice, because of the geometry of the coil, the magnetic field on the axis of

symmetry is totally transverse.

Problems occurred when an attempt was made to calculate the magnetic field in points

not belonging to z-axis or outside the coil, where the symmetry does not simplifies the
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calculations any more. So it was obvious that an arithmetical method was needed, with

the help of ROOT and C++.

A quite simple code, with the main principles of the method we should use to calculate

the magnetic field in the plane x = 0, was provided by my supervisor and my task was

to check it and to develop it so that it would calculate the magnetic field in the planes

y = 0 and z = 0, and the magnetic flux in planes x = 0 and y = 0, too. The final code

(plotsaddlefield6.C) is presented in the last pages of the report and, as a result of it, the

following plots occurred (see Fig.4.4). The real value of the magnetic field is given by

multiplying the program’s results by a constant:

C =
µ0I

4π
≈ 10−7I (4.7)
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Figure 4.4: Transverse magnetic field and flux in different planes of the coil

The functions used in this program have occurred by the fundamental formula 4.3 as

following. Taking the current as having a constant modulus Eq.4.3 can be transformed

into:

~B =
µ0I

4π

∫ ~dl × r̂

r2
(4.8)
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Here ~dl can be represented by the vector (dx, dy, dz) which is the unitary (very small)

change in the current direction. r is the distance between a random space point and

the space point on the coil that produces the magnetic field. So if we represent as ~r1 =

(x1, y1, z1) the coordinates of the space point where we want to calculate the magnetic

field and as ~r = (x, y, z) the coordinates of the space point on the coil that produces the

magnetic field, the last equation 4.8 becomes as:

~B =
µ0I

4π

∫

~df (4.9)

wherein:

r̂ =
~r

r3
~r = ~r − ~r0 (4.10)

and

~df =
~dl × r̂

r3
(4.11)

or

~df =
[(z − z0)dy0 − (y − y0)dz0 ]̂i + [(x − x0)dz0 − (z − z0)dx]ĵ + [(y − y0)dx0 − (x − x0)dy0]k̂

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2

(4.12)

Here the integration is during the parts of the coil (4 linear parts and 4 curved) and the

space coordinates of the coil parts are used as variables of integration. So, according to

the coil’s structure not all the coordinates change during each part of it. So for the linear

parts the function to integrate will be:

~df =
[−(y − y0)dz0 ]̂i − [(x − x0)dz0]ĵ

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(4.13)

While for each one of the curved parts the function to be integrated will be:

~df =
[−(z − z0)dy0 ]̂i + [−(z − z0)dx0]ĵ + [(y − y0)dx0]k̂

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(4.14)

Especially for the calculation of the curved parts, because of cylindrical symmetry of the

coil, we can replace dx0 and dy0 by their equals in cylindrical coordinates, −Rdφsinφ and

Rdφcosφ, where the angle φ increases anticlockwise. We must notice here, that we had to

take under serious consideration the direction of integrating during these parts in respect

to the current direction inside them. Also, we should mention that we are interested only

in the transverse components of the magnetic field, neglecting the k̂ component which is

parallel to the main axis of the coil.

According to these last remarks the final form of the function for the curved parts is:

~df =
[−(z − z0)Rdφcosφ]̂i + [(z − z0)Rdφsinφ]ĵ + [−(y − y0)Rdφsinφ]k̂

[(x − x0)2 + (y − y0)2 + (z − z0)2]3/2
(4.15)

Actually, 4.13 and 4.15 are the functions that we used and integrated by the code and

this is the reason why the results should be multiplied by the constant 4.7 to get the

quantitatively correct ones.
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As a result Observing the plots we can notice that the magnetic field outside the coil

has a very small value and that’s why it is not easy to detect the polarization of the

material outside of it. Another remark is that, though the magnetic field should have

negative value in some space points, according to the theory, we see that the plot contains

only positive values and this is because we plot the absolute value of the strength of the

transverse magnetic field only.

As one may see in the plots, the field goes to 0 outside of the coil. If we take as useful

magnetic field the one that is from z-coordinate equal from -0.08 m to 0.08 m, where

the magnetic field is bigger than zero (see Fig. 4.5), then we can conclude that we can

measure only a volume of πR2 × 0.16m3, where R is the radius of the coil R = 0.015m.

So the volume that we measure is about: 1.131 × 10−4m
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Figure 4.5: Transverse magnetic field and flux in different planes of the coil

Other than the plots, the code also gives as a result the magnetic flux in the planes y = 0

and x = 0 which are correspondingly fluxy= 0.641751V s and fluxx= 0.36275V s. Their

sum give a result which is what we expected divided by 3. This may happen because we

didn’t take under account the flux in the field z = 0 or maybe the method that we used
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to calculate the flux is not that accurate.

Another task An NMR signal simulation program was provided by my supervisor and

I had to run it several times, changing the parameters so that the final result could be

as similar as possible to the experimental one. The program (fccmomslineshapeDA.C)

calculates the second moment for deuterium with all possible neighbors (D, 6Li, 7Li and

proton). The value of the second moment depends on the orientation of the crystal with

respect to external 2.5 T field. The crystal orientation is chosen randomly by setting

the Euler angles. The second moment and given center frequency are then used to add

one more NMR-signal to the simulated TE-signal. For the TE-signals the amplitude

is kept constant, i.e. we assume that the polarization is same everywhere. The field

inhomogeneity of the 2.5 T field, about 10-100 ppm is simulated by adding a small random

fluctuation to the center frequency of the NMR-signal. For the polarized crystals the

center frequency f0 and the second moment M2 are exactly the same as for the crystals

in TE-calibration. Their polarization (around 50%) has small uncertainity however.

After adding all the signals from the 1000 polarized crystals we get a simulated polarized

signal seen by the NMR-coil (see Fig. 4.6). The polarization is then calculated by dividing

the area of the simulated polarized signal by that of the simulated TE-signal. The results

are written into a file ’simulpols’. The resulting histogram can be plotted by a second

program (histlineshape2.C). By trying different uncertainties in the center frequency and

in the polarization I tried to produce similar results that we see in our experiment.

The following histograms have occurred by executing with different parameters (uncer-

tainties in the center frequency and in the polarization.

While changing the parameters of the execution, the shape of NMR simulated signal was

the same. By plotting each histogram for different parameters we had the result shown

in fig 4.7-4.11.

11



16.34 16.36 16.38 16.4 16.42

610×0

200

400

600

800

1000

Simulated TE-signal

16.34 16.36 16.38 16.4 16.42

6
10×0

10000

20000

30000

40000

50000

Simulated polarized signal

Figure 4.6: Simulated polarized signal seen by the NMR-coil
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Figure 4.7: Monte Carlo simulating histogram: uncertainty in center frequency=500Hz,

uncertainty in polarization 5%.
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Figure 4.8: Monte Carlo simulating histogram: uncertainty in center frequency=500Hz,

uncertainty in polarization 7%.
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Figure 4.9: Monte Carlo simulating histogram: uncertainty in center frequency=1000Hz,

uncertainty in polarization 4%.
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Figure 4.10: Monte Carlo simulating histogram: uncertainty in center frequency=1000Hz,

uncertainty in polarization 7%.
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Figure 4.11: Monte Carlo simulating histogram: uncertainty in center frequency=1000Hz,

uncertainty in polarization 4.5%.
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